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We investigate probability density functions of velocity differences at different distanogsasured in a
Couette-Taylor flow for a range of Reynolds numbers Re. There is good agreement with the predictions of a
theoretical model based on nonextensive statistical mechamiwye the entropies are nonadditive for inde-
pendent subsystemd/Ne extract the scale-dependent nonextensitivity parangéteRe) from the laboratory
data.
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[. INTRODUCTION data obtained for turbulent Couette-Taylor flow for different
Reynolds numbers Re and spatial scalesor details on the
Recently a generalization of the ordinary formalism of experiment, see Ref13].
statistical mechanics, so-called nonextensive statistical me- We will provide evidence that a slightly generalized ver-
chanics, has gained a lot of inter¢st-3]. While in ordinary  sion of the theory described in R¢fL1] yields a good fit to
statistical mechanics the Boltzmann-Gibbs entropy is exthe experimentally measured probability densities. These fits
tremized(subject to constraintsin the generalized formal- were achieved by varying only one quantity, the nonextensi-
ism the more general Tsallis entropi€s are extremized. tivity parameterg. We will also present systematic experi-
Given probabilities; of the microstates of the physical sys- mental results showing howy depends on Re and
tem under consideration, the Tsallis entropies are defined as The probability densities obtained from nonextensive sta-
tistical mechanics asymptotically decay with a power law
1 2 q with a rather large exponemt. In our modelw is related to
Tgq-1 1- : Pit | 1) g by w=(4-2q)/(1—q). We will provide experimental
evidence that there is a simple scaling law for the function
where the parameteris the nonextensitivity parameter. The W(V’Re)- ) ) ) .
Tsallis entropies are convex, take on their extremum for the This paper is organized as follows. Section Il describes
uniform distribution, and preserve the Legendre transfornfh€ experiment. Section Ill summarizes the theory presented
structure of thermodynamics. However, in contrast to thd" Ref.[11], and the formalism is slightly generalized. Sec-
Boltzmann-Gibbs entropy, they are nonextensifeon-  fion I_\_/ compares the exp_erlmentqlly_ measure_d probability
additive for independent subsystenpsovidedq#1. fjensmes with the theoretical pred|ct|o_n_s._ Section V exam-
Ordinary statistical mechanics is contained as a specid'€S the dependence of the nonextensitivity paranterd
case in the generalized formalism, since in the ligrit 1 the the exponentv on Reynolds number and the spatial scale.
Tsallis entropies reduce to the Boltzmann-Gibbs entropy,

Sq

S_lz —2ip _In P - _Recent work_indicates that the n_onext_en— Il. EXPERIMENT
sive formalism withq+ 1 describes many systems, including
those exhibiting Levy-type anomalous diffusipf, particles The experiments were conducted on a concentric cylinder

produced in collider experiments near the Hagedorn phasgystem with the inner cylinder rotating and the outer cylinder
transition[5—7], and various turbulent systerf&-11]. A list ~ at res{13]. This Couette-Taylor system had a radius ratio of
of references on nonextensive statistical mechanics and it 724. Measurements were made for Reynolds numbers Re
applications is given if12]. Generally, it is not known how up to 540 000, where ReQa(b—a)/v ({2 is the inner cyl-

the parameteq depends on the internal properties of theinder rotation ratea andb are the inner and outer cylinder
system under consideration. radii, andv is the kinematic viscosity With Re=0 initially,

In this Rapid Communication we will apply the nonexten- the flow exhibits a sequence of bifurcations with increasing
sive formalism to turbulence. In Refl1], fully developed Re. The last transition that has been observed occurs at Re
turbulent states were distinguished from spatiotemporal cha= 13 000[13]. Here we consider data for R&9 000, where
otic states that extremize the Tsallis entropies, and formulathe flow is strongly turbulent.
were obtained for probability densities of longitudinal veloc-  Velocity measurements were made with a hot film probe
ity differences measured at a distanceHere we test the located midway between the two cylinders. The rms velocity
theoretical predictions by comparing them with experimentafluctuations were typically only 6% of the mean velocity;
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hence, the data satisfy Taylor’s frozen turbulence hypothesis
that is, temporal fluctuations recorded by the fixed velocity
probe should accurately reflect the streamwise spatial fluc-
tuations[13].

IIl. THEORETICAL MODEL FOR PROBABILITY
DENSITIES OF LONGITUDINAL VELOCITY
DIFFERENCES

In Ref.[11] a perturbative approach to probability densi-
ties in fully developed turbulent flows was suggested, basec
on a small parametefyr, wherer is a typical time scale of
the chaotic force driving the local velocity differences and
vy~ 1is the relaxation time to the stationary state. From the
experimentally observed skewness of turbulent distributions
one can estimate the order of magnitude of the paramete
Jyr to be about 0.1; hence, a perturbative approach make:
sense. Assuming that longitudinal velocity differenae@;,)
=p(x+r)—v(x), in fully developed turbulence extremize
the Tsallis entropies, and that large classes of chaotic relax g,
ation processes approach the Gaussian limit in a universa
way (see Ref[14]), one can obtain the following formulas
[11]:

log, ,p(u)

p<u>=Zi[1+ﬁ<q—1>e<u>]-1’<q-l>, 2
q
e(u)=3u?—c\yr(u—3u)+O(y7), (3)
2 —
B:m, @ 2

wherep(u) is the stationary probability density of velocity
differences, and(u) is a (formal) effective energy associ-
ated with the velocity difference. 8 is a variance parameter
that describes &ormal) inverse temperature in the nonex-
tensive statistical mechanicg, is a normalization constant.
c is a nonuniversal constant, i.e., a constant that may be
different for different experiments and that can also depend
on g. However, the functional fornu—3u® of the term of
order \/F is expected to be univers@see[11,14)). The
parameterg depends on the distanecein an (a priori) un-
known way.

For c=0 and 8=2/(5—-3q), the density in Eq(2) has
average value 0 and variance 1. Howeveic#0 andpg is
still 2/(5—3q), then the average af is of orderyr and the
varianceo = ((u?)—(u)?)¥2 is slightly different from 1. An

(b)
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FIG. 1. Experimentally measured probability density functions
of the velocity differences for the Couette-Taylor experiment at
Re=540000 are compared with the theoretical curp¢s) (for
a=2-(): (a) Logarithmic plot, (b) Linear plot. The logarithmic
plot is sensitive to the tails, while the linear plot is sensitive to the
vicinity of the maximum. For the experimental curves, the distances

average precisely zero and a variance of unity are achieved,, (where 7 is the Kolmogorov length scaleare, from top to

with the rescaledrenormalized distribution given by

p(u)=ap(a(u—(uy)). (5)

bottom: 11.6, 23.1, 46.2, 92.5, 208, 399, 830, and 14 400. For the
theoretical curves, the values of the nonextensivity parancedee,
from top to bottom: 1.168, 1.150, 1.124, 1.105, 1.084, 1.065, 1.055,

) ) . and 1.038. For better visibility, each distribution(@ is shifted by
The terme(u) in Eq. (3) stands for an effective energy in _1 ynit along they axis, and each distribution ifb) is shifted by
the formalism of nonextensive statistical mechanics. Indeed,-g.1 unit along they axis.

for g—1, the Boltzmann factop(u)~e ™ #<") is recovered.
Let us here slightly generalize the approach of R&t] by
considering more general effective energy levels given by

For =1, Eq.(3) is recovered, but we will allow for more

general exponents as well. The physical idea behind this is

e(u)=z|ul**—c\yrsgnu)(Jul*—3[u[*>).

(6)
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FIG. 2. Relative differenced(u)=[pi(u) — Pexpd U) 1/ Prn(U) FIG. 4. The exponent=(4—2q)/(q—1) describing the decay

between theoretical and experimental probability densities'at  rate of the probability density for larg|. Scaling behavior of
=11. The difference decreases with increasing Reynolds numben(r) is observed for a large range of distancesThe Reynolds
Re=69000 (+), 133000 (<), 266000 (*), and 540000L0).  numbers are 69 000+(), 133 000 (<), 266 000 (*), and 540 000
For each Reynolds number the best possible fit is ugedl(148, (O). The straight lines correspond to the power lam(r)

1.159, 1.167, and 1.168, respectively =4(r/7)? with §=0.440, 0.395, 0.360, and 0.326, respectively.
o IV. COMPARISON WITH THE EXPERIMENTAL

similar to that of theB-model of turbulencél5], where only MEASUREMENTS

a certain fractior3 of the physical volume is considered to - ) ) )

contain active eddies. In thg-model one essentially re- We compare the probability density functions determined

places the structure functiobu|™) by structure functions from the CouettS—TaonrveIocity measurements with the the-
{lu|*™ with a+#1 related to the intermittency parameter. oretical Qensitiesp(u) obtained fro_m n_onextensive statistical
Similarly, in our dynamical model we repla¢a| by |u|®. mechanics. The result is shown in Fig. 1 for Reynolds num-
An exponentz slightly smaller than 1 may be interpreted as Per Re=540000, equivalent to a Taylor scale Reynolds
describing a fractal phase space and eddies that are nB¥MPerR,=262[13]. The best fits were obtained by choos-
space-filling. The formalism of nonextensive statistical me/Nd a according to the empirical formula=1—-(q—1)
chanics is designed to include such systems. =2—q. For the strength of the skewness term we have cho-
In the following we will see that while the choice=1  Sen,cyy7=0.124@—1). Then only one independent pa-
yields reasonably good fits of the experimental data, an ex@meterqis left, which is fitted for each experimentally mea-

ponenta slightly smaller than 1 yields the best fits to the Sured distribution in such a way that the relative mean square
data. deviation integrated oveu takes a minimum. Although we

only vary a single parametey, the agreement with the ex-
perimentally measured densities is excellentx Ifs chosen

12 « ' ' ' ' as 1(as originally suggested ifl1]), the agreement is still
118 |+ +*fg>5g T reasonable but not as good as for2—q.
1.46 - *i}?%@ 4 Other theoretical approaches to turbulent densities-
+ X0 22], based, for example, on stretched exponentials or other
114 ey T functional forms, usually fit only certain parts of the distri-
112 - 1:’(&%& . bution (e.g., the tailg leaving other partge.g., the vicinity
—— +++x% i of the maximum unaccounted for. Our formula yields good
++x><x by fits of the experimental data for the entire rangaiafalues.
108 - i T To demonstrate the good fit for allwe present both a loga-
1.06 | % qﬂmch g rithmic plot, which emphasizes the taifig. 1(a)], and a
104 b ++X><><f‘;**ﬂq¥n - ] linear plot, which emphasizes the maximum and its vicinity
S e T T [Fig. b)]. To the best of our knowledge, there is no other
1.02 | TR T theoretical model that yields fits of similar quality. Figure 2
1 ! ! L L shows that the residual difference between theory and experi-

! 10 100 1000 10000 ments for the same spatial scaléy~11 (where 5 is Kol-

" mogorov scalg¢13]), decreases with increasing Re.
FIG. 3. The fitness parametey(r,Re) deduced from a least 1 ne functionq(r,Re), deduced from the experiment, will
square fit of the velocity data to the theoretical probability density.0€ €xamined in the next section. All relevant information on

The Reynolds numbers are 69 000, 133 000 (<), 266 000 (*),  the densities appears to be encoded in this function, which is
and 540 000 [0). similar to an equation of state in ordinary thermodynamics.
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V. MEASURING q(r,Re) r\d
: : . W(r)=4(—> : €)
We have determined the functian(r,Re) for different n

spatial scales and Reynolds numbers Re by minimizing the here the exponent depends weakly on the Reynolds num-
integrated relative quadratic deviation between measure\éyer Re. We finds=0440. 0.395 0360 and 0326 for Re

distributions and theoretical distrbutions. For each Reynolts-69 000, 133000, 266000, and 540000, respectively. For
number, irerent spatial scales were evaluated an 7<10, the experimental data saturate ve#=9. For w

results are shown in Fig. 3. The nonextensitivity parameter > 60, fluctuations become large.
varies with both the spatial scaléz and with the Reynolds  the constant in front of the experimentally determined
number. There is a tendency to smaligfor smaller Re. For  power law is found to be 4:00.1, independent of the Rey-
smallr, q approaches the valug,~1.185. For larger, 4 nolds number. A simple argument for the value 4 could be as
does not approach 1 but saturates at a slightly larger valuggllows. Suppose we could measure the probability distribu-
d..~1.03, the precise value being Reynolds number depention of ideal turbulence in an unperturbed way down to the
dent. Hence, small deviations from the Gaussian distributiorkolmogorov scales for infinite Reynolds number. Assum-
remain at the largest scales. This may be a finite-system sidrg that the scaling law9) remains valid for Re-c« andr
effect. — 7y we obtain ar = 5 the valuew(#) =4, no matter whabd
The predicted probability densities for large| exhibit is. But for turbulence to make sense at least the third moment
power law decay, as can be deduced from Egsand (6),  (|u|®) should exist, since this is the most fundamental ob-
where we neglect the terr®(\/y7) (our formula for this servable related to energy dissipation. Existence of the third
term represents a perturbative result valid only for moment atr = » is guaranteed ifv=4+¢€, wheree is an
<1 yr=~10): arbitrarily small positive number. This argument suggests
that the constant should be 4.
p(u)~|ul™", (7 For Re— the idealized small-scale turbulence at 7 is
characterized by the smallest possiblewhere it makes
sense to speak about energy dissipatibe third moment
20 4-2q Sincew=4, the flatness factdf =(u*)/(u?)? as well as all
W= ——0r=—r. (8)  higher moments at this scale would then diverge for Re
-1 g-1 — o0, This is compatible with experimental observat[@3].

with exponentw given by

The exponentw has the meaning that only moments
(Jul™) of the density withm< (w— 1) exist. This sounds like
a severe restriction on the existence of structure functions, Part of this research was performed during C.B.’s stay at
but sincew is rather large (Xw< 60 for the Couette-Taylor the Institute for Theoretical Physics, University of California
datg, this effect does not contradict the experimental meaat Santa Barbara, supported in part by the National Science
surements of structure functions. Figure 4 shows the functiofoundation under Grant No. PHY94-07194. C.B. also grate-
w(r,Re) determined from the experimental data. We observéully acknowledges support by a Leverhulme Trust Senior
that w exhibits simple scaling behavior for medium spatial Research Fellowship of the Royal Society. The research by
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