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Model-independent nonlinear control algorithm with application to a liquid bridge experiment
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We present a control method for high-dimensional nonlinear dynamical systems that can target remote
unstable states withoeat priori knowledge of the underlying dynamical equations. The algorithm constructs a
high-dimensional look-up table based on the system’s responses to a sequence of random perturbations. The
method is demonstrated by stabilizing unstable flow of a liquid bridge surface-tension-driven convection
experiment that models the float zone refining process. Control of the dynamics is achieved by heating or
cooling two thermoelectric Peltier devices placed in the vicinity of the liquid bridge surface. The algorithm
routines along with several example programs written in thgLaB language can be found at ftp://
ftp.mathworks.com/pub/contrib/v5/control/nicontrp§1063-651X98)12807-6

PACS numbgs): 05.45:+b, 43.25.Ts, 47.20.Dr, 47.20.Ky

[. INTRODUCTION equations of motion are not available. The algorithm con-
structs its control law as a look-up table obtained directly
Feedback control provides a unique ability to alter thefrom a sequence of system responses to applied perturba-
behavior of dynamical systems by selectively stabilizing dif-tions. Because no mathematical transformations are used to
ferent unstable states that may coexist in such systems. Stdefine the control law, the algorithm is simple and robust
bilization requires an application of very small perturbations,towards identification errors. In contrast, a feedback linear-
with little modification of the original system. For example, ization techniqug11], widely adopted for nonlinear control,
unstable periodic orbits that densely fill a chaotic attractosuffers from structural uncertainties and identification errors
provide an infinite reservoir of different periodic behaviors that are inevitably present when dynamical equations are re-
and the chaotic system can be forced to follow any of theconstructed from time series. Model-predictive confiii]
desired periodic motions using simple linear control methds another nonlinear control approach, especially popular
ods, known as Ott-Grebogi-York@©GY) control [1]. This  among chemical engineers. Unfortunately, because it re-
approach has been exploited to control chaotic behavior in guires that the optimization routine be carried out every sam-
variety of physical, chemical, and biological systef@s6]. pling iteration, it is impossible to use in applications requir-
OGY control theory and other similar methods assume théng fast response from the controller.
availability of linear equations of motion obtained either by ~Our model-independent algorithm has been successfully
linearization of the underlying nonlinear equations of motionapplied in the earlier experiments to stabilize periodic orbits
or by the method of system identificatiffi] from laboratory in a liquid bridge[13]. However, complete suppression of
time series. In all the cases the system is described in thiéme-dependent behavior, i.e., stabilization of the steady
small neighborhood of the steady state or fixed point wher&tate, was not possible with the scalar form of the control
linear approximation works well. Once the linear dynamicsalgorithm. We present an extended vector form of the non-
is known the goal of control is to change the eigenvalues ofinear control algorithm in Sec. Il and then demonstrate its
the controlled system, which is usually accomplished using &'se in Sec. Il by stabilizing an unstable steady state in liquid
pole-placement algorithrf8]. bridge convection.
Often, however, unstable states are distant in phase space
from the system attractor. For example, when a steady State 1l. DESCRIPTION OF THE CONTROL ALGORITHM
loses stability through a Hopf bifurcation it becomes sepa-
rated from the stable limit cycle by the nonlinear vector flow. A. Necessary conditions for controllability in linear
Large perturbations have to be applied in order to move the and nonlinear systems

system from the limit cycle to the unstable steady state Controlling a dynamical system entails finding a pertur-
through the nonlinear regions of the vector field. Nonlinearyation sequence that moves the system from its present state
targeting can be accomplished in some cases by linear metrétB to some target stat§, as schematically shown in Fig. 1.
ods[9], when linearized equations provide a fair approxima-The state vectog is the vector in phase space that moves
tion of the dynamics. In regimes where nonlinearity of theg|ong the system trajectory. We use a discrete description of
vector flow is strong, however, nonlinear control methodsihe system by sampling the dynamics at equal time intervals.
must be used. . . This discretization facilitates computerized data processing
A recently introduced model-independent algorithbd]  ang simplifies application of the control perturbations. Con-
can control nonlinear systems even when the underlyingo| perturbations are piecewise, i.e., they are kept constant
between sampling points. Formally, an evolutioréa$ gov-

erned by some nonlinear functidn
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In practice, the whole controlling sequendéi + 1) does
not have to be calculated at tht iteration. Instead, only the
first perturbationu(i+1) is calculated based og,= &(i)
and & as

u(i+1)=C(&,.4). ()

On the next controlling iteration(i +2) is calculated us-
ing &=&(i+1) and the samé; . In the absence of noise we
expect that these two approaches should give the same result
for u(i +2), but the latter should be more robust in a noisy
environment since more recent information is used for cal-
culating the control perturbations.

FIG. 1. Phase space representation of the control algorithm. The B. Observability of system dynamics
system trajectory is moved from the present sttédo the target . . .
state &, which is often an unstable fixed point as depicted here. 1he control law defined in Eq3) requires the knowledge

Targeting requires two iterations to achieve the goal state in thi®f the system state vectdj which may not be observable
schematic drawing for a two-dimensional system. directly in laboratory conditions. Instead, the system is ob-

served byl sensors that form an observation vecyorin

whereu(i + 1) is a vector of perturbations that are applied tog9eneral,y is some nonlinear projection functioh of the
the inputs of the system between iteratiordi+ 1. If Eq.  SyStem coordinates:

(1) can be inverted to find for an arbitrary present sta y(i)=P(&()) 4)
and given target stat&, then the control problem is solved. '

In the linear case when we can approximate € as If I>m and the sensors provide independent information,

then a one-to-one reconstruction of the system state is pos-
. oF ) sible from instantaneous readings of observables. Otherwise,
§i+1)= € i)+ —--ui+1), time-delayed readings of must be used to increase the di-
mensionality of the observation vector.
Combining Egs.(2) and (4) for k successive iterations
i,...,i+k=1, the following system of equations is ob-
tained:

the solution foru can always be found if the rank of the
system response matrid=/du equals the dimensionality of
the systemm=dim(£&). This condition is fulfilled when the
control parameters are not degenerate and aiga. When y(i)=P(&(i))
F is nonlinear, one cannot guarantee the availability of the '
solution of Eq.(1) even when dimg) >m. . . . .

When a system does not have sufficient independent con- y(i+1)=P(&i+1))=P(F(&(i),uli +1))),
trol inputs to reach the target state in one step, control is still ) )
possible withn controlling iterations applied in succession.  Y(i+k—=1)=P(&i+k-1))

This can be seen from the equation forrath iterate: =P(FY(&i),u(i+1), ... u(i+k—1))).
Ei+n)=F(.. . FE&)uGi+1), .. uli+n) ®)
=F"(&i),U(i+1)), 2) If Eq. (5) can be solved fok(i), then the system is observ-

able, i.e., one can reconstruct the state of the system from
h time-delayed observations. The linearized version of (&p.
where can be written as

U(i)=[u(), ... u(i+n=1)] y(i) ui+1)

=O'§(i)+B' , (6)

is a perturbation vector that combines perturbations applied (i+k) u(i+k)

to all the system’s controlling inputs at every iteration of the y

control sequence.

Since the system of equations defined by E2). has

n dim(u) unknowns, it can be solved fai(i +1), at least in PO

the linear sense, whar=m/dim(u). The exact controllabil-

ity conditions for nonlinear systems cannot be easily derived, P(F($))

but the general strategy is to lengthen the control sequence J .

until the system becomes controllable. The control law for 1

this case can be found by inversion of H) to express B= P(F(9)

U(i+1) as a function of(i)=§, and &(i + n)=§;. Ju(i+1)---u(i+k)]

where
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describes the sensitivity of the observations to applied per- (a) 5)‘
turbations and the observability matrix

P(&)
P(F(8)

P(F< (&)
IE

defines the relation between time-delayed observations and
the system state. Solvability is satisfied when raé m.
This means that if the number of independent observation
channels is less than the dimensionality of the system, then a
time-delayed vector wittlk=m/l delayed coordinates has to (c)
be built. u

For a nonlinear system, observability cannot be guaran-
teed based on simple considerations of the linear indepen- [
dence of time-delayed observations. The problem is reminis- ‘ |_|_‘ t
cent of prediction of a time series generated by a nonlinear
system. The longer the length of the observation sequence,
the higher the probability that the solution can be found; fiG. 2. Schematic controlling sequence showiay relations
therefore, in practic&k can be increased until the system petween time series of state vectafts, observables, an¢t) con-
becomes observable. trolling perturbations. The dashed vectors(@ correspond to un-

From these considerations E&) can be modified to ex- perturbed dynamics, while the solid vectors represent the system
press§, and§; as a function ofy andu. Equation(5) explic-  trajectory during the controlling sequence.
itly relates£(i) and the set of time forwardgdandu. Time-
delayed readings can be used as well becdifse k—1) The use of time-delayed perturbations in the target state
can be calculated frong(i) and U(i) using Eq.(2). There-  definition requires knowledge of perturbations applied dur-
fore, & in Eq. (3) can be replaced by the time-delayed vectoring the control sequence, as can be seen from Fig. 2. The

stabilized steady state &=0 in Fig. 2 corresponds tg

i+2
i+1

Y

Y =[y(i—k+1), ...y(i),u(i —k+2),u(i—k)] =0. The observer looking at will conclude that the target
state is reached only after sevesa:0 and u=0 are re-
and§; can be replaced by the time-forwarded vector corded, i.e., several iterations past the moment of reaching
. . ) . ) &=0. The use of a time-forwarded sequence in this case
YD) =[y(i), ... y(i+k=1),u(i+1),u(i+k-1)]. allows the convenient definition of the target state in terms of

the desired values of the observation variables. For example,
With these new arguments the control functinbecomes to define the steady state=0 as the target state, values
deper_ldent only on quantities that can be measured directly iﬂargetzo and Uz ge= 0 are substituted iy
experiment. If the targeted steady state has never been visited before
by the system trajectory, then the exact value of the observ-
C. Construction of the control law ableyi, qe: May not be known to us. In this case one can use

The choice of time direction in forming the sequenyds & time derivative and set=0 as a target. Since in experi-
andY' can be understood from Fig. 2. There are two differ-menty usually has a low signal-to-noise ratio, the finite dif-
ent stages of the algorithm: identification and control. Duringferences formulation should be used instead:
the identification stage, uniformly distributed, random per- o . .
turbations are applied to the system and corresponding re- DY (D=0(i+1)=y(i), ... y(i+k)
sponses are measured to build a control function. During the —y(i+k—1),u(i+1), ... u(i+k)).
control stage, thar andy that define the present state are

recorded whileu andy for the target state are preset to val- » ] ] ] ‘) ]
ues determined by the control objective. The additional reading/(i+k) in DY'(i) necessitates the

Since all data recorded during the identification stage caf’clusion of the additional perturbation terafi +k) since
be analyzed off line, past and future information relative to¥(i k) is affected by the perturbation applied during itera-
any point in the middle of the identification sequence istion i + k. In our experiment the finite-difference form of the
available. One can use either a time-forwarded or a timeState vector was used both f#f and Y in order to cancel
delayed sequence for defining the current state. During thi@W-frequency drift in the temperature sensors. _
on-line control stage, however, only past information relative _Note that special care must be exercised during the iden-
to the current iteration is available. This imposes the restricfification procedure if the controlled dynamical system has
tion that only time-delayed observations can be used to denultiple steady states. Singe=0 cannot differentiate be-
fine the current state. tween coexisting states, the functi@will be multivalued
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and additional constraints are necessary to specify the target4]. We found, however, that neural networks have poor

state. approximating properties when used with small data sets and
Real-time application of the algorithm requires some timehigh-dimensional systems.

be spent on calculation of the controlling perturbation. This |n the experiment described in this paper a look-up table

will produce a delayd before the current measurement is procedure was used with the reference data set recorded dur-

taken and the corresponding perturbation is applied. Thergng the identification sequence serving as a basis for approxi-

fore, the target state will be reached dn-n iterations in-  mation ofC. At every iteration of the control stage the vector

stead ofn iterations. Also, since applied perturbations dis-[DYgurrentiDY{arget] is matched with the vectors from the

turb the corresponding observatiodsiterations later, the qenification data set using minimum distance criteria. Sev-
indices ofu in Y have to be shifted byl iterations. As & gra| neighbors are used for approximating the surface at the
result of incorporating delays and finite differences in thepoint of interest. In the absence of noife=dim(DY")
state vectors in Eq.3), the control surface has the form +dim(DY% + 1 points are sufficient to draw an approximat-
ing tangential hyperplane iR-dimensional space. If noise is
u(i+1)=C(DY%i),DY'(i+n+d)), present, it is desirable to have more data points and use a
least-squares fitting procedure to determine the parameters of
) ) this plane. We used the technique of singular-value decom-
y(i—k+1)—y(i—k) position [15] to find the approximating plane in a manner
suggested for prediction of time series generated by nonlin-
(i) —y(i—1) ear sys.tem516], exce_pt that herg we are trying to “predict”
DYY(i)= . , controlling perturbations that will bring our system to the
u(i—k—d+1) desired state.
. The optimal number of neighbors used for interpolation
, depends on the nonlinearity of the surface and density of
u(i) points in the region of phase space where the approximation

is made. Although a larger neighborhood allows more points

y(i+1)—y(i) to be used in calculating the approximation, it may be best to

use a smaller neighborhood in regions with high local curva-
ture since the remote points may introduce a systematic error

y(i+k)—y(i+k—1) due to the deviation of the surface from the plane. The opti-

DYf(i)= u(i—d+1) . 7 mal approximation should therefore take into account differ-

ent curvatures of the surfaces in the different regions of the
phase space. We found that using a constant number of ap-
u(i—d+k) proximating neighbors gives sufficiently uniform error distri-
bution for our weakly nonlinear system. The number of
neighbors that minimizes the average error of the approxi-
The choice ofn, k, andd depends on the controlled sys- mation in our experiment was found to be approximate®y 3

tem and may be not knowa priori. In linear or weakly
nonlinear systems the length of the observation sequéddce (
multiplied by the number of observation channels and the Despite its internal complexity, the final formulation of
length of the control sequences)(multiplied by the number the algorithm is compact and can easily be used with any
of feedback elements are usually the same and equal to thmaultiple-input—multiple-output system. In addition to stabi-
dimensionality of the systenm{). If m is not known but the lizing unstable states, the method can be used for targeting
system has low noise and the dynamics has a well definedbjective dynamics or tracking a preset trajectory. The only
number of degrees of freedom, then the set of data recordedodification to the equations for the targeting is a different
during the identification stage can be used to check the fittingorm of DYf(i) that uses differences in perturbations instead
error that the reconstructed surfaCeproduces against re- of differences in observatiori40]. The complete implemen-
corded perturbations. The optimal choicenpfk, andd will tation of the algorithm incorporating all the different forms
minimize the fitting error. However, if a large amount of of goal dynamics can be found at ftp:/ftp.mathworks.com/
noise is present or the controlled system has many degrees jpiib/contrib/v5/control/nicontrol. The routines are written in
freedom, then the fitting error criteria become less reliableMATLAB language and also include sample programs for con-
The best solution is to apply the control algorithm, trying trolling the logistic map, the Lorenz equations, a four-
different combinations of, k, andd, and select the combi- dimensional model of the liquid bridge, and a physical pen-
nation that provides the optimal convergence toward the tardulum.

D. Using the algorithm

get state.
Once all terms in the control surface are established, I1l. APPLICATION OF THE CONTROL ALGORITHM TO
the exact shape can be found using different approximating A LIQUID BRIDGE EXPERIMENT

techniques. The specific choice depends on the quality and
size of the data sets, nature of the controlled system, and
required speed of the control calculation. Artificial neural A liquid bridge is a convective system where a drop of
networks, for example, can be used to approxin@tehen  fluid is trapped between two coaxial cylindrical boundaries
fast calculation of the controlling perturbation is required[Fig. 3@]. A temperature differencAT is imposed verti-

A. Experimental setup
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FIG. 3. Sketch of our liquid bridge convection experime(al. e
Side view showing hot and cold boundaries made of coaxial stain-
less steel cylinders with radii of 0.3 cm. The distaricbetween 1 ‘

cylinders is 0.3 cm. One of the two pairs of sensors and feedback
elements is showr(b) Top view indicating angular location of the
sensors and feedback elements. The sensor is a 0.03-cm-diam the 1
mistor that is placed 0.03 cm from the surface of the liquid. The
feedback elements are D.3 cnf thermoelectric devices thatare ; g |
placed at the same height as the temperature sensors.

-1 F
cally across the drop, with the upper surface heated and bot
tom surface cooled. Surface-tension gradients due to the im ‘
posed temperature gradient drive a steady-state toroidal flov 0 200 400

that is downward along the liquid-gas interface and upward time (s)

in the center of the drop. For large enoufjii, the axisym- i _ _ i

metric toroidal flow becomes unstable to an oscillatory state FIG. 4. Tlme-senes_recordlngs (.)f the control experiment. The
[17]; additional oscillatory frequencies appear for even larget'PPe" Plot shows readings of the first channel sensor. The lower
AT [18]. Liquid bridge convection models hydrodynamic ef- plot shows pertl;}rbatlolns ap_phed to the flrgt channel feedback ele-
fects in the float-zone refinement of crystalline materials,mem' Second channel readings look identical.

where appearance O.f t_he t_ime-depend_ent convect?\/_e flow ir]térclockwise and clockwise rotating waves will produce
S;chsizllsjrt]g;[sg?g f\g ?:&tgg]!n the chemical composition of th(?dentical temperature variation at any particular location

our working fluid is a purified Dow Coming 200 silicone around the liquid bridge surface. In order to remove this
oil [20] with eiqPrandtI nEmber of approximegl]tely 40 and adegeneracy we use measurements of the surface temperature
volume of 0.065 cf We imposeAT—~12.5°C with the at two locations around the liquid bridge and apply perturba-

tions by lowering or raising the temperature of two feedback
upper boundary warmer than the lower; the mean temper y g g b

ture of the bottom boundary is 15.0 °C aAd is computer Elements positioned as shown in Figbf3
controlled to a precision of-0.05 °C. Buoyancy effects,
which would stabilize convection due to the direction of
heating, play little role since the height of the drop is small. Temperature measurements converted into voltage and
The dimensionless number that characterizes the surfaghgitized every 0.7 s are used to define our observation vec-
tension driving is the Marangoni numbdt=oATI/pvk,  tor y(i)=[y;(i),y,(i)]. To synthesize the state vectors
with liquid density p=0.89 g/cni, kinematic viscosityr ~ andY', the numbers, k, andd are found using a trial-and-
=0.026 cni/s, distancel =0.3 cm between the cylinders, error method. The dimensionality of the liquid bridge is ex-
thermal diffusivity k=7.4x10"* cn¥/s, surface tensioor,  pected to be at least 4 since each traveling wave can be
and or=|do/dT|=0.068 dyn/cm K. For smalM, the con- described by two variables with two possible directions of
vective flow is time independent. F&A =14 000, the flow rotation. Fastest convergence of the algorithm is achieved
becomes oscillatory and infrared imaging reveals that thavith k=n=4, suggesting that the overall dimensionality
flow has the structure of a helical traveling wadd]. In our  of the bridge iskX2=nXx2=8. The four additional degrees
experimentM ~ 15 000. of freedom probably correspond to the pair of counterrotat-
In our previous experiments a single temperature sensdng waves that are least stable for the conditions of our ex-
and a single feedback element were sufficient for stabilizaperiment. These waves are excited by the applied perturba-
tion of unstable periodic orbits. However, attempts to suptions and contribute to the observed dynamics.
press the helical traveling wave via a simple extension of this The optimal delayd is found to be two sampling periods
scheme were not effective. Instead of stabilizing the stead{l.4 9. One delay interval is needed for the sorting procedure
state in the liquid bridge, the control algorithm was found toon our Pentium 120-MHz computer, which forces the pro-
change the flow into a standing wave with a node at thegram to skip at least one sampling period before the calcu-
sensor location. This failure can be explained by the degerlated controlling perturbations are applied to the feedback
eracy of the stationary state with respect to the direction otlements. The second sampling interval delay improves con-
wave rotation, counterclockwise and clockwise, resulting invergence since it takes approximately 0.3 s for changes in the
the appearance of rotational degrees of freedom with exactl{emperatures of the Peltier devices to affect the fluid flow.
the same eigenvalues. It is thus impossible to realize an8electingd=2 makes the overall dimensionality of the con-
control the direction of wave rotation just by looking at the trol surface C equal to 36 (hX4+1Xd=8x4+2X2).
temperature variation of a single probe since both the counSuch high dimensionality is a drawback of the reconstruction

B. Experimental results
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FIG. 5. Power spectra of the temperature before control is ap-
plied (top) and after the convergence to the steady state is complete
(bottom. The dynamics of 58 100 individual pixels in the infrared
image of the liquid bridge is converted to the corresponding power
spectra using 512 frames taken with 0.2-s intervals. The power
spectra of all pixels are then averaged to improve the signal-to-
noise ratio.

since the length of the reference set grows as a power of the
embedding dimension. However, since the method does not
rely on any model, uncertainties in the controlling surface FiG. 6. Infrared image$0.6 cmx0.3 cm showing temperature
reconstructions are not amplified by additional transformadistribution in the liquid bridgé18] (a) and (b) before,(c) during,
tions and as the experiment shows, the method is robust eveind (d) after the controlling sequence. Darker regions have lower
with a moderate number of reference data points. temperatures. The waves (@) and (b) appear to deviate from the
During the first part of the identification stage, 3000 ran-helical form because Peltier devices disrupt the symmetry of the
dom perturbations and corresponding temperature responsesundary conditions even when the control is not active.
are used to form the reference data set. After the control
algorithm is activated, new control perturbations and systention of the frequency, time, and location on the bridge sur-
responses are added to the reference set. This procedusee. Averaging over the bridge surface produces a power
adaptively decreases the approximating error; as contrapectrum(Fig. 5 that can be used as an indicator of the
takes the system closer to the target state, new observationgerall dynamics of the bridge; i.e., any periodic movement
provide a finer interpolation of the control surface aroundwill appear as a peak at the corresponding frequency. The
this state. In our experiment an additional 3000 iterations areeduction of the fundamental frequency to the noise floor
added to the reference set as the system converges toward thiger control is activated confirms the stabilization of the
goal. steady state. No additional waves are excited by the control
Figure 4 demonstrates the application of the control algoand as a result the controlling perturbations become quite
rithm to the liquid bridge after the reference set is built. small, as shown in Fig.(®).
Control is activated at=110 and slowly suppresses the os- The spatial distribution of the temperature field filtered at
cillatory amplitude. Convergence is significantly slower thanthe characteristic frequency of 0.42 Hz is shown in Fig. 6 for
the expected four iterations since 6000 data points bareldifferent stages of the experiment. The first two images show
provide a satisfactory approximation of a 36-dimensionalthe temperature distribution of the rotating wave before the
nonlinear surface. In addition, the maximum range of theapplication of the algorithm. The third image shows a mo-
controlling perturbations is limited by the power handling ment during the control sequence, where uneven temperature
capacities of the Peltier devices. distribution is produced by the control. The fourth image
An infrared camera is used to monitor temperature variaconfirms the complete suppression of the temperature varia-
tions on the liquid bridge surface and to confirm that thetions in the liquid bridge.
stabilization is successful at every point of the observed sur- Large perturbations are required to push the system from
face of the liquid bridge. Unfortunately, the low signal-to- the stable limit cycle to the unstable steady state at the be-
noise ratio of infrared camera measurements requires filteginning of the control sequence. Once the steady state is
ing of the obtained video sequence and only time-averagettached, only small perturbations are necessary to maintain
dynamics can be reliably monitored. the stationary convection and the average power applied to
A moving window of 512 consecutive recordings is usedthe controllers drops to about 1Q0N, less than 1% of the
to calculate power spectra of the bridge dynamics as a fundieat flow through the bridge.




PRE 58 MODEL-INDEPENDENT NONLINEAR CONTROL ... 433

Restrictions on the maximum size of the applied pertur-algorithm. Using high-power feedback elements, one could
bations may forbid the targeting of very remote points inapply the method to improve quality of the zone refining
phase space. We are not able to suppress time-dependgmbcesses in industry.
convection when the temperature difference is more than
1.0 °C above the critical value)\(T=11.7°) that corresponds ACKNOWLEDGMENTS
to the Hopf bifurcation in the system. This limitation is
mostly due to the weak response of the fluid flow to changes The authors thank Michael F. Schatz, Stanislav Shvarts-
in the temperatures of the Peltier devices, which cannot bean, William D. McCormick, and Jack B. Swift for useful
cooled more than a few degrees during the application of thdiscussions. This research was supported by the NASA Mi-
pulse. crogravity Science and Applications DivisiofGrant No.

Our control algorithm works well for Marangoni numbers NAG3-1839, the Office of Naval ResearckGrant No.
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