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Model-independent nonlinear control algorithm with application to a liquid bridge experiment

Valery Petrov,* Anders Haaning, Kurt A. Muehlner, Stephen J. Van Hook, and Harry L. Swinney†

Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas 78712
~Received 11 March 1998!

We present a control method for high-dimensional nonlinear dynamical systems that can target remote
unstable states withouta priori knowledge of the underlying dynamical equations. The algorithm constructs a
high-dimensional look-up table based on the system’s responses to a sequence of random perturbations. The
method is demonstrated by stabilizing unstable flow of a liquid bridge surface-tension-driven convection
experiment that models the float zone refining process. Control of the dynamics is achieved by heating or
cooling two thermoelectric Peltier devices placed in the vicinity of the liquid bridge surface. The algorithm
routines along with several example programs written in theMATLAB language can be found at ftp://
ftp.mathworks.com/pub/contrib/v5/control/nlcontrol.@S1063-651X~98!12807-6#

PACS number~s!: 05.45.1b, 43.25.Ts, 47.20.Dr, 47.20.Ky
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I. INTRODUCTION

Feedback control provides a unique ability to alter t
behavior of dynamical systems by selectively stabilizing d
ferent unstable states that may coexist in such systems.
bilization requires an application of very small perturbatio
with little modification of the original system. For exampl
unstable periodic orbits that densely fill a chaotic attrac
provide an infinite reservoir of different periodic behavio
and the chaotic system can be forced to follow any of
desired periodic motions using simple linear control me
ods, known as Ott-Grebogi-Yorke~OGY! control @1#. This
approach has been exploited to control chaotic behavior
variety of physical, chemical, and biological systems@2–6#.
OGY control theory and other similar methods assume
availability of linear equations of motion obtained either
linearization of the underlying nonlinear equations of moti
or by the method of system identification@7# from laboratory
time series. In all the cases the system is described in
small neighborhood of the steady state or fixed point wh
linear approximation works well. Once the linear dynam
is known the goal of control is to change the eigenvalues
the controlled system, which is usually accomplished usin
pole-placement algorithm@8#.

Often, however, unstable states are distant in phase s
from the system attractor. For example, when a steady s
loses stability through a Hopf bifurcation it becomes se
rated from the stable limit cycle by the nonlinear vector flo
Large perturbations have to be applied in order to move
system from the limit cycle to the unstable steady st
through the nonlinear regions of the vector field. Nonline
targeting can be accomplished in some cases by linear m
ods@9#, when linearized equations provide a fair approxim
tion of the dynamics. In regimes where nonlinearity of t
vector flow is strong, however, nonlinear control metho
must be used.

A recently introduced model-independent algorithm@10#
can control nonlinear systems even when the underly
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equations of motion are not available. The algorithm co
structs its control law as a look-up table obtained direc
from a sequence of system responses to applied pertu
tions. Because no mathematical transformations are use
define the control law, the algorithm is simple and robu
towards identification errors. In contrast, a feedback line
ization technique@11#, widely adopted for nonlinear contro
suffers from structural uncertainties and identification err
that are inevitably present when dynamical equations are
constructed from time series. Model-predictive control@12#
is another nonlinear control approach, especially popu
among chemical engineers. Unfortunately, because it
quires that the optimization routine be carried out every sa
pling iteration, it is impossible to use in applications requ
ing fast response from the controller.

Our model-independent algorithm has been successf
applied in the earlier experiments to stabilize periodic orb
in a liquid bridge@13#. However, complete suppression
time-dependent behavior, i.e., stabilization of the stea
state, was not possible with the scalar form of the con
algorithm. We present an extended vector form of the n
linear control algorithm in Sec. II and then demonstrate
use in Sec. III by stabilizing an unstable steady state in liq
bridge convection.

II. DESCRIPTION OF THE CONTROL ALGORITHM

A. Necessary conditions for controllability in linear
and nonlinear systems

Controlling a dynamical system entails finding a pertu
bation sequence that moves the system from its present
jp to some target statejt , as schematically shown in Fig. 1
The state vectorj is the vector in phase space that mov
along the system trajectory. We use a discrete descriptio
the system by sampling the dynamics at equal time interv
This discretization facilitates computerized data process
and simplifies application of the control perturbations. Co
trol perturbations are piecewise, i.e., they are kept cons
between sampling points. Formally, an evolution ofj is gov-
erned by some nonlinear functionF:

j~ i 11!5F„j~ i !,u~ i 11!…, ~1!
427 © 1998 The American Physical Society
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whereu( i 11) is a vector of perturbations that are applied
the inputs of the system between iterationsi andi 11. If Eq.
~1! can be inverted to findu for an arbitrary present statejp
and given target statejt , then the control problem is solved
In the linear case when we can approximate Eq.~1! as

j~ i 11!5
]F

]j
•j~ i !1

]F

]u
•u~ i 11!,

the solution foru can always be found if the rank of th
system response matrix]F/]u equals the dimensionality o
the systemm5dim(j). This condition is fulfilled when the
control parameters are not degenerate and dim(u)>m. When
F is nonlinear, one cannot guarantee the availability of
solution of Eq.~1! even when dim(u).m.

When a system does not have sufficient independent
trol inputs to reach the target state in one step, control is
possible withn controlling iterations applied in successio
This can be seen from the equation for annth iterate:

j~ i 1n!5F~ . . . F„j~ i !,u~ i 11!…, . . .u~ i 1n!!

[Fn
„j~ i !,U~ i 11!…, ~2!

where

U~ i !5@u~ i !, . . . ,u~ i 1n21!#

is a perturbation vector that combines perturbations app
to all the system’s controlling inputs at every iteration of t
control sequence.

Since the system of equations defined by Eq.~2! has
n dim(u) unknowns, it can be solved forU( i 11), at least in
the linear sense, whenn>m/dim(u). The exact controllabil-
ity conditions for nonlinear systems cannot be easily deriv
but the general strategy is to lengthen the control seque
until the system becomes controllable. The control law
this case can be found by inversion of Eq.~2! to express
U( i 11) as a function ofj( i )[jp andj( i 1n)[jt .

FIG. 1. Phase space representation of the control algorithm.
system trajectory is moved from the present statejp to the target
statejt , which is often an unstable fixed point as depicted he
Targeting requires two iterations to achieve the goal state in
schematic drawing for a two-dimensional system.
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In practice, the whole controlling sequenceU( i 11) does
not have to be calculated at thei th iteration. Instead, only the
first perturbationu( i 11) is calculated based onjp5j( i )
andjt as

u~ i 11!5C~jp ,jt!. ~3!

On the next controlling iterationu( i 12) is calculated us-
ing jp5j( i 11) and the samejt . In the absence of noise w
expect that these two approaches should give the same r
for u( i 12), but the latter should be more robust in a noi
environment since more recent information is used for c
culating the control perturbations.

B. Observability of system dynamics

The control law defined in Eq.~3! requires the knowledge
of the system state vectorj, which may not be observabl
directly in laboratory conditions. Instead, the system is o
served byl sensors that form an observation vectory. In
general,y is some nonlinear projection functionP of the
system coordinates:

y~ i !5P„j~ i !…. ~4!

If l .m and the sensors provide independent informati
then a one-to-one reconstruction of the system state is
sible from instantaneous readings of observables. Otherw
time-delayed readings ofy must be used to increase the d
mensionality of the observation vector.

Combining Eqs.~2! and ~4! for k successive iterations
i , . . . ,i 1k21, the following system of equations is ob
tained:

y~ i !5P„j~ i !…,

y~ i 11!5P„j~ i 11!…5P~F„j~ i !,u~ i 11!…!,

y~ i 1k21!5P„j~ i 1k21!…

5P~Fk21
„j~ i !,u~ i 11!, . . . ,u~ i 1k21!…!.

~5!

If Eq. ~5! can be solved forj( i ), then the system is observ
able, i.e., one can reconstruct the state of the system f
time-delayed observations. The linearized version of Eq.~5!
can be written as

S y~ i !

•••

y~ i 1k!
D 5O•j~ i !1B•S u~ i 11!

•••

u~ i 1k!
D , ~6!

where

B5

]S P~j!

P„F~j!…

•••

P„Fk21~j!…

D
]@u~ i 11!•••u~ i 1k!#
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describes the sensitivity of the observations to applied p
turbations and the observability matrix

O5

]S P~j!

P„F~j!…

•••

P„Fk21~j!…

D
]j

defines the relation between time-delayed observations
the system state. Solvability is satisfied when rank(O)>m.
This means that if the number of independent observa
channels is less than the dimensionality of the system, th
time-delayed vector withk5m/ l delayed coordinates has t
be built.

For a nonlinear system, observability cannot be guar
teed based on simple considerations of the linear indep
dence of time-delayed observations. The problem is remi
cent of prediction of a time series generated by a nonlin
system. The longer the length of the observation seque
the higher the probability that the solution can be foun
therefore, in practicek can be increased until the syste
becomes observable.

From these considerations Eq.~3! can be modified to ex-
pressjp andjt as a function ofy andu. Equation~5! explic-
itly relatesj( i ) and the set of time forwardedy andu. Time-
delayed readings can be used as well becausej( i 1k21)
can be calculated fromj( i ) andU( i ) using Eq.~2!. There-
fore,jp in Eq. ~3! can be replaced by the time-delayed vec

Yd~ i !5@y~ i 2k11!, . . . ,y~ i !,u~ i 2k12!,u~ i 2k!#

andjt can be replaced by the time-forwarded vector

Y f~ i !5@y~ i !, . . . ,y~ i 1k21!,u~ i 11!,u~ i 1k21!#.

With these new arguments the control functionC becomes
dependent only on quantities that can be measured direct
experiment.

C. Construction of the control law

The choice of time direction in forming the sequencesYd

andY f can be understood from Fig. 2. There are two diff
ent stages of the algorithm: identification and control. Dur
the identification stage, uniformly distributed, random p
turbations are applied to the system and corresponding
sponses are measured to build a control function. During
control stage, theu and y that define the present state a
recorded whileu andy for the target state are preset to va
ues determined by the control objective.

Since all data recorded during the identification stage
be analyzed off line, past and future information relative
any point in the middle of the identification sequence
available. One can use either a time-forwarded or a tim
delayed sequence for defining the current state. During
on-line control stage, however, only past information relat
to the current iteration is available. This imposes the rest
tion that only time-delayed observations can be used to
fine the current state.
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The use of time-delayed perturbations in the target s
definition requires knowledge of perturbations applied d
ing the control sequence, as can be seen from Fig. 2.
stabilized steady state atjt50 in Fig. 2 corresponds toy
50. The observer looking aty will conclude that the targe
state is reached only after severaly50 and u50 are re-
corded, i.e., several iterations past the moment of reach
jt50. The use of a time-forwarded sequence in this c
allows the convenient definition of the target state in terms
the desired values of the observation variables. For exam
to define the steady statej50 as the target state, value
ytarget50 andutarget50 are substituted inY f .

If the targeted steady state has never been visited be
by the system trajectory, then the exact value of the obs
ableytarget may not be known to us. In this case one can u
a time derivative and setẏ50 as a target. Since in exper
ment ẏ usually has a low signal-to-noise ratio, the finite d
ferences formulation should be used instead:

DY f~ i !5„y~ i 11!2y~ i !, . . . ,y~ i 1k!

2y~ i 1k21!,u~ i 11!, . . . ,u~ i 1k!….

The additional readingy( i 1k) in DY f( i ) necessitates the
inclusion of the additional perturbation termu( i 1k) since
y( i 1k) is affected by the perturbation applied during iter
tion i 1k. In our experiment the finite-difference form of th
state vector was used both forY f andYd in order to cancel
low-frequency drift in the temperature sensors.

Note that special care must be exercised during the id
tification procedure if the controlled dynamical system h
multiple steady states. Sinceẏ50 cannot differentiate be-
tween coexisting states, the functionC will be multivalued

FIG. 2. Schematic controlling sequence showing~a! relations
between time series of state vectors,~b! observables, and~c! con-
trolling perturbations. The dashed vectors in~a! correspond to un-
perturbed dynamics, while the solid vectors represent the sys
trajectory during the controlling sequence.



rg

m
hi
is
er

is

he

s-

(
th

n
rd
tin
-

of
es
le
g

-
ta

,
tin
a
a
ra

ed

or
and

ble
dur-

oxi-
or
e
ev-
the

t-
s
se a
rs of
om-
er
lin-

’’
e

on
of

tion
nts
t to
va-
rror
pti-
er-
the
f ap-
ri-
of
xi-

f
any
i-
ting
nly
nt
ad
-
s
m/
in
on-
r-
n-

of
ies

430 PRE 58VALERY PETROV et al.
and additional constraints are necessary to specify the ta
state.

Real-time application of the algorithm requires some ti
be spent on calculation of the controlling perturbation. T
will produce a delayd before the current measurement
taken and the corresponding perturbation is applied. Th
fore, the target state will be reached ind1n iterations in-
stead ofn iterations. Also, since applied perturbations d
turb the corresponding observationsd iterations later, the
indices ofu in Y have to be shifted byd iterations. As a
result of incorporating delays and finite differences in t
state vectors in Eq.~3!, the control surface has the form

u~ i 11!5C„DYd~ i !,DY f~ i 1n1d!…,

DYd~ i !5S y~ i 2k11!2y~ i 2k!

•••

y~ i !2y~ i 21!

u~ i 2k2d11!

•••

u~ i !

D ,

DY f~ i !5S y~ i 11!2y~ i !

•••

y~ i 1k!2y~ i 1k21!

u~ i 2d11!

•••

u~ i 2d1k!

D . ~7!

The choice ofn, k, andd depends on the controlled sy
tem and may be not knowna priori. In linear or weakly
nonlinear systems the length of the observation sequencek)
multiplied by the number of observation channels and
length of the control sequences (n) multiplied by the number
of feedback elements are usually the same and equal to
dimensionality of the system (m). If m is not known but the
system has low noise and the dynamics has a well defi
number of degrees of freedom, then the set of data reco
during the identification stage can be used to check the fit
error that the reconstructed surfaceC produces against re
corded perturbations. The optimal choice ofn, k, andd will
minimize the fitting error. However, if a large amount
noise is present or the controlled system has many degre
freedom, then the fitting error criteria become less reliab
The best solution is to apply the control algorithm, tryin
different combinations ofn, k, andd, and select the combi
nation that provides the optimal convergence toward the
get state.

Once all terms in the control surfaceC are established
the exact shape can be found using different approxima
techniques. The specific choice depends on the quality
size of the data sets, nature of the controlled system,
required speed of the control calculation. Artificial neu
networks, for example, can be used to approximateC when
fast calculation of the controlling perturbation is requir
et
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@14#. We found, however, that neural networks have po
approximating properties when used with small data sets
high-dimensional systems.

In the experiment described in this paper a look-up ta
procedure was used with the reference data set recorded
ing the identification sequence serving as a basis for appr
mation ofC. At every iteration of the control stage the vect
@DYcurrent

d ,DYtarget
f # is matched with the vectors from th

identification data set using minimum distance criteria. S
eral neighbors are used for approximating the surface at
point of interest. In the absence of noise,R5dim(DY f)
1dim(DYd)11 points are sufficient to draw an approxima
ing tangential hyperplane inR-dimensional space. If noise i
present, it is desirable to have more data points and u
least-squares fitting procedure to determine the paramete
this plane. We used the technique of singular-value dec
position @15# to find the approximating plane in a mann
suggested for prediction of time series generated by non
ear systems@16#, except that here we are trying to ‘‘predict
controlling perturbations that will bring our system to th
desired state.

The optimal number of neighbors used for interpolati
depends on the nonlinearity of the surface and density
points in the region of phase space where the approxima
is made. Although a larger neighborhood allows more poi
to be used in calculating the approximation, it may be bes
use a smaller neighborhood in regions with high local cur
ture since the remote points may introduce a systematic e
due to the deviation of the surface from the plane. The o
mal approximation should therefore take into account diff
ent curvatures of the surfaces in the different regions of
phase space. We found that using a constant number o
proximating neighbors gives sufficiently uniform error dist
bution for our weakly nonlinear system. The number
neighbors that minimizes the average error of the appro
mation in our experiment was found to be approximately 3R.

D. Using the algorithm

Despite its internal complexity, the final formulation o
the algorithm is compact and can easily be used with
multiple-input–multiple-output system. In addition to stab
lizing unstable states, the method can be used for targe
objective dynamics or tracking a preset trajectory. The o
modification to the equations for the targeting is a differe
form of DY f( i ) that uses differences in perturbations inste
of differences in observations@10#. The complete implemen
tation of the algorithm incorporating all the different form
of goal dynamics can be found at ftp://ftp.mathworks.co
pub/contrib/v5/control/nlcontrol. The routines are written
MATLAB language and also include sample programs for c
trolling the logistic map, the Lorenz equations, a fou
dimensional model of the liquid bridge, and a physical pe
dulum.

III. APPLICATION OF THE CONTROL ALGORITHM TO
A LIQUID BRIDGE EXPERIMENT

A. Experimental setup

A liquid bridge is a convective system where a drop
fluid is trapped between two coaxial cylindrical boundar
@Fig. 3~a!#. A temperature differenceDT is imposed verti-
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cally across the drop, with the upper surface heated and
tom surface cooled. Surface-tension gradients due to the
posed temperature gradient drive a steady-state toroidal
that is downward along the liquid-gas interface and upw
in the center of the drop. For large enoughDT, the axisym-
metric toroidal flow becomes unstable to an oscillatory st
@17#; additional oscillatory frequencies appear for even lar
DT @18#. Liquid bridge convection models hydrodynamic e
fects in the float-zone refinement of crystalline materia
where appearance of the time-dependent convective flow
duces undesired variation in the chemical composition of
crystals that are formed@19#.

Our working fluid is a purified Dow Corning 200 silicon
oil @20# with a Prandtl number of approximately 40 and
volume of 0.065 cm3. We imposeDT;12.5 °C with the
upper boundary warmer than the lower; the mean temp
ture of the bottom boundary is 15.0 °C andDT is computer
controlled to a precision of60.05 °C. Buoyancy effects
which would stabilize convection due to the direction
heating, play little role since the height of the drop is sm

The dimensionless number that characterizes the sur
tension driving is the Marangoni numberM[sTDTl/rnk,
with liquid density r50.89 g/cm3, kinematic viscosityn
50.026 cm2/s, distancel 50.3 cm between the cylinders
thermal diffusivity k57.431024 cm2/s, surface tensions,
andsT[uds/dTu50.068 dyn/cm K. For smallM , the con-
vective flow is time independent. ForM*14 000, the flow
becomes oscillatory and infrared imaging reveals that
flow has the structure of a helical traveling wave@18#. In our
experiment,M;15 000.

In our previous experiments a single temperature sen
and a single feedback element were sufficient for stabil
tion of unstable periodic orbits. However, attempts to s
press the helical traveling wave via a simple extension of
scheme were not effective. Instead of stabilizing the ste
state in the liquid bridge, the control algorithm was found
change the flow into a standing wave with a node at
sensor location. This failure can be explained by the deg
eracy of the stationary state with respect to the direction
wave rotation, counterclockwise and clockwise, resulting
the appearance of rotational degrees of freedom with exa
the same eigenvalues. It is thus impossible to realize
control the direction of wave rotation just by looking at th
temperature variation of a single probe since both the co

FIG. 3. Sketch of our liquid bridge convection experiment.~a!
Side view showing hot and cold boundaries made of coaxial st
less steel cylinders with radii of 0.3 cm. The distancel between
cylinders is 0.3 cm. One of the two pairs of sensors and feedb
elements is shown.~b! Top view indicating angular location of th
sensors and feedback elements. The sensor is a 0.03-cm-diam
mistor that is placed 0.03 cm from the surface of the liquid. T
feedback elements are 0.130.3 cm2 thermoelectric devices that ar
placed at the same height as the temperature sensors.
ot-
-

w
d

e
r

,
n-
e

a-

.
ce

e

or
-
-
is
y

e
n-
f

n
tly
d

n-

terclockwise and clockwise rotating waves will produ
identical temperature variation at any particular locati
around the liquid bridge surface. In order to remove t
degeneracy we use measurements of the surface temper
at two locations around the liquid bridge and apply pertur
tions by lowering or raising the temperature of two feedba
elements positioned as shown in Fig. 3~b!.

B. Experimental results

Temperature measurements converted into voltage
digitized every 0.7 s are used to define our observation v
tor y( i )5@y1( i ),y2( i )#. To synthesize the state vectorsYd

andY f , the numbersn, k, andd are found using a trial-and
error method. The dimensionality of the liquid bridge is e
pected to be at least 4 since each traveling wave can
described by two variables with two possible directions
rotation. Fastest convergence of the algorithm is achie
with k5n54, suggesting that the overall dimensionalitym
of the bridge isk325n3258. The four additional degree
of freedom probably correspond to the pair of counterro
ing waves that are least stable for the conditions of our
periment. These waves are excited by the applied pertu
tions and contribute to the observed dynamics.

The optimal delayd is found to be two sampling period
~1.4 s!. One delay interval is needed for the sorting proced
on our Pentium 120-MHz computer, which forces the p
gram to skip at least one sampling period before the ca
lated controlling perturbations are applied to the feedb
elements. The second sampling interval delay improves c
vergence since it takes approximately 0.3 s for changes in
temperatures of the Peltier devices to affect the fluid flo
Selectingd52 makes the overall dimensionality of the co
trol surface C equal to 36 (m341 l 3d58341232).
Such high dimensionality is a drawback of the reconstruct

n-

ck

er-
e

FIG. 4. Time-series recordings of the control experiment. T
upper plot shows readings of the first channel sensor. The lo
plot shows perturbations applied to the first channel feedback
ment. Second channel readings look identical.
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432 PRE 58VALERY PETROV et al.
since the length of the reference set grows as a power o
embedding dimension. However, since the method does
rely on any model, uncertainties in the controlling surfa
reconstructions are not amplified by additional transform
tions and as the experiment shows, the method is robust
with a moderate number of reference data points.

During the first part of the identification stage, 3000 ra
dom perturbations and corresponding temperature respo
are used to form the reference data set. After the con
algorithm is activated, new control perturbations and sys
responses are added to the reference set. This proce
adaptively decreases the approximating error; as con
takes the system closer to the target state, new observa
provide a finer interpolation of the control surface arou
this state. In our experiment an additional 3000 iterations
added to the reference set as the system converges towa
goal.

Figure 4 demonstrates the application of the control al
rithm to the liquid bridge after the reference set is bu
Control is activated att5110 and slowly suppresses the o
cillatory amplitude. Convergence is significantly slower th
the expected four iterations since 6000 data points ba
provide a satisfactory approximation of a 36-dimensio
nonlinear surface. In addition, the maximum range of
controlling perturbations is limited by the power handlin
capacities of the Peltier devices.

An infrared camera is used to monitor temperature va
tions on the liquid bridge surface and to confirm that t
stabilization is successful at every point of the observed
face of the liquid bridge. Unfortunately, the low signal-t
noise ratio of infrared camera measurements requires fi
ing of the obtained video sequence and only time-avera
dynamics can be reliably monitored.

A moving window of 512 consecutive recordings is us
to calculate power spectra of the bridge dynamics as a fu

FIG. 5. Power spectra of the temperature before control is
plied ~top! and after the convergence to the steady state is comp
~bottom!. The dynamics of 503100 individual pixels in the infrared
image of the liquid bridge is converted to the corresponding po
spectra using 512 frames taken with 0.2-s intervals. The po
spectra of all pixels are then averaged to improve the signa
noise ratio.
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tion of the frequency, time, and location on the bridge s
face. Averaging over the bridge surface produces a po
spectrum~Fig. 5! that can be used as an indicator of t
overall dynamics of the bridge; i.e., any periodic moveme
will appear as a peak at the corresponding frequency.
reduction of the fundamental frequency to the noise flo
after control is activated confirms the stabilization of t
steady state. No additional waves are excited by the con
and as a result the controlling perturbations become q
small, as shown in Fig. 4~b!.

The spatial distribution of the temperature field filtered
the characteristic frequency of 0.42 Hz is shown in Fig. 6
different stages of the experiment. The first two images sh
the temperature distribution of the rotating wave before
application of the algorithm. The third image shows a m
ment during the control sequence, where uneven tempera
distribution is produced by the control. The fourth ima
confirms the complete suppression of the temperature va
tions in the liquid bridge.

Large perturbations are required to push the system f
the stable limit cycle to the unstable steady state at the
ginning of the control sequence. Once the steady stat
reached, only small perturbations are necessary to main
the stationary convection and the average power applie
the controllers drops to about 100mW, less than 1% of the
heat flow through the bridge.

p-
te

r
er
o-

FIG. 6. Infrared images~0.6 cm30.3 cm! showing temperature
distribution in the liquid bridge@18# ~a! and ~b! before,~c! during,
and ~d! after the controlling sequence. Darker regions have low
temperatures. The waves in~a! and ~b! appear to deviate from the
helical form because Peltier devices disrupt the symmetry of
boundary conditions even when the control is not active.
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Restrictions on the maximum size of the applied pert
bations may forbid the targeting of very remote points
phase space. We are not able to suppress time-depen
convection when the temperature difference is more t
1.0 °C above the critical value (DT511.7°) that correspond
to the Hopf bifurcation in the system. This limitation
mostly due to the weak response of the fluid flow to chan
in the temperatures of the Peltier devices, which canno
cooled more than a few degrees during the application of
pulse.

Our control algorithm works well for Marangoni numbe
near the onset of the oscillatory flow; the ability to contro
spatially extended system with four unstable degrees of f
dom in laboratory conditions proves the robustness of
tt

t,

re

,

o

-

ent
n

s
e
e

e-
e

algorithm. Using high-power feedback elements, one co
apply the method to improve quality of the zone refini
processes in industry.
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