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Argoul et al. Reply: The work commented on' contains
the first numerical evidence that small-mass diffusion-
limited aggregates (DLA) are self-similar fractals with
generalized fractal dimensions D, =1.60=10.02, inde-
pendent of gq. This analysis was performed using box-
counting (g=0) and fixed-mass (¢ <0) algorithms.
The Comment? suggests that the difference between this
value of D; and the well established value of the dynami-
cal dimension Dy;=1.71 =*0.02, obtained from the
dependence of the radius of the gyration on the cluster
size, results from finite-size effects.

We have extended our analysis to cluster sizes (M
~5x10*) comparable to the range of mass of the off-
lattice clusters investigated in Ref. 2. Surprisingly,
despite anisotropic effects induced by the underlying
square lattice, our results still agree with our previous es-
timate.! In Fig. 1(a) we have plotted the partition func-
tion Z; =0 vs € on log-log scales. The local slope of this
graph gives the local dimension shown in Fig. 1(b); this
dimension remains clearly below D; over the entire ac-
cessible € range, although it displays an increasing be-
havior from small to large scales. This drift probably
arises from finite-size effects. In Fig. 1(c), we have plot-
ted the residue of a linear least-squares fit of the graph
in Fig. 1(a). Our residue is about 4 times smaller than
that found by Li, Sander, and Meakin? (this is presum-
ably the consequence of our averaging method over 50
random positions of the box-counting grid), but it
displays a similar concave behavior which is directly as-
sociated with the drift observed in the local dimension
measurement. At small scales, the local dimension natu-
rally decreases towards 1, the dimension of a line, before
ultimately increasing towards 2, the dimension of a sur-
face, since each particle was identified with an elementa-
ry cell of our lattice. (This trick was used to soften the
crossover to 1.) At large scales, the largest ¢ considered
in our box-counting algorithm is of the size of the cluster
itself which explains the tendency of the local dimension
to increase towards 2.

Li, Sander, and Meakin? introduced a nonlinear
correction term in the linear least-squares fit of logZ, vs
loge. There is no perturbative justification for this phe-
nomenological nonlinear term except that it reduces and
flattens the residue and yields a new estimate of D,
=1.69 £0.03, in agreement with the dynamical dimen-
sion value D;==1.71%£0.02. This result is somewhat
puzzling since this nonlinear estimate does not lie inside
the errors bars of the linear least-squares fit D, =1.57
+0.05 which is quite consistent with our estimate for
on-lattice clusters. Moreover, this nonlinear estimate is
significantly larger than our local estimate of D, shown
in Fig. 1(b) over the entire accessible € range.

The main feature that seems to be common to both
off-lattice and on-lattice DLA clusters is that finite-size
effects affect the entire ¢ range accessible, even for clus-
ters of mass M ~10°. This can be seen in Fig. 1(b)
where the local dimensions D, do not display any sig-

(A T T
— [
~—i F
| -4 Dy = 1.60 ¥ 0.02 oo
o' L
~— t
\ I
o
S a
2
—12 L Lowea 0 I
1.8 —— T T T T
o %v,,apoaDOc"o °o
A 1.6 T— R
: (b)
1.4 Lo L a1 L
0.1 T T T T
RN
g= t %, o
2 % 00
a3 %
< 0 \9 &9;’& B
ot
(c)
. TR NP | L
0 1 2 3 4 5

loge
FIG. 1. Box-counting computation of D, =¢ for an on-lattice
DLA cluster of mass M =5x10% (a) logZ,/(g—1) vs loge.
(b) The local dimension given by the slope of the curve in (a)
obtained from linear regression fits for the range Aloge
=logv?2. (c) Residue of the linear fit of the graph in (a).

nificant plateau for intermediate e values. This is also
evident in Fig. 1(c), where the residue in the linear
least-squares fit exhibits a rather sharp minimum instead
of a flat minimum over a wide range of scales. By the
reasoning of Li, Sander, and Meakin,? one expects the
residue curve to flatten for large cluster mass, but we
have not found such a tendency in the range of mass
(M =103 to 10°) that we have investigated with on-
lattice DLA clusters. The size of the DLA clusters need-
ed to decide whether or not D,=1.60+0.02 is an
asymptotic estimate may be far beyond the power of
current computers. Thus the possibility that the fractal
dimension Dy converges asymptotically to the dynamical
dimension value D;=1.7110.02 in the limit of very
large clusters is still an exciting numerical challenge.
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