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Prediction, filtering and control of nonlinear systems is formulated in terms of corresponding
nonlinear surfaces in the phase space of delayed system readings and control parameters. The
construction of these surfaces from time series and their use is demonstrated with a simple chemical
model in the chaotic regime. ©1997 American Institute of Physics.@S1054-1500~97!00404-7#
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Advances in controlling dynamical systems, stimulated in
recent years by the challenge of chaotic dynamics, hav
been largely based on the development of linearized mod
els from time series.1 Linear control techniques for low-
dimensional chaotic systems, such as th
Ott –Grebogi–Yorke2 method, have been successfully ap
plied in a variety of physical, chemical, and biological
settings.3 Progress has also been made in the developmen
of linear methods for controlling high-dimensional
systems.4–7 Nonlinear techniques, where measurements
and perturbations are not restricted to a linear region
around the state of interest, are less well developed. W
present a unified approach for nonlinear prediction, fil-
tering and control based on the construction of appropri-
ate nonlinear hypersurfaces directly from time-series
readings. A three-variable model for chemical chaos is
used to demonstrate the approach, which permits global
characterization and control of dynamical behavior with-
out knowing the underlying mechanistic features or gov-
erning equations of the dynamical system.

I. INTRODUCTION

The prediction of the future behavior of dynamical sy
tems is a broadly discussed topic due to the many possi
ties for practical applications. We consider the problem
time-series prediction as an introduction to our method
nonlinear surface reconstruction. The technique is dem
strated by constructing the prediction surface from a cha
time series and then using this surface to predict future
havior.

Nonlinear filtering allows the reconstruction of one sy
tem observable from delayed readings of a second sys
observable. In our chemical model, the system observa
are related to the concentrations of the chemical specie
the reaction. The concentration of one component migh
measured, for example, by monitoring the system with
ion-selective electrode. This signal can then be used to
culate the precise concentration of another component o
reaction at any time, even when the reaction is in the cha
regime and the system trajectory is nonrepeating.

Nonlinear control provides the means to direct the t
Chaos 7 (4), 1997 1054-1500/97/7(4)/614/7/$10.00
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jectory of a system to a desired goal in phase space. The
is typically an unstable steady or periodic state, which, o
it is realized, is then stabilized by the algorithm. The cont
objective or goal can also be some dynamical pattern
found in the autonomous system. In each case, the con
objective is approached in a minimum number of steps
the algorithm.

II. PREDICTION

Prediction of the future evolution of a multidimension
system is closely related to the ability to reconstruct the s
tem state from available observations. The evolution of
system can then be described in terms of the coordin
along the system manifolds. When the trajectory is samp
at even time intervals, the readings of the coordinates at e
iteration represent the state of the system at that iteratio

Consider a general two-dimensional nonlinear syste
where (j, h) are the coordinates along the system manifol
The manifolds originating from the eigenvectors of a partic
lar steady state are shown schematically in Figure 1. We
consider only a small region around the steady state whe
linear description can be used to characterize the time e
lution of the discretized system:

j i 115ljj i , h i 115lhh i . ~1!

Here,j i , h i are the components of the vector defining the
of the system trajectory in phase space,lj , lh are the ei-
genvalues along the corresponding eigenvectors, and (j, h)
5~0, 0! are the coordinates of the steady state. Usually
behavior of the system variables cannot be observed dire
but, rather, is projected on some variablex, which we denote
the observable variable:

xi5tjj i1thh i , ~2!

wheretj andth are the projection coefficients. In a chemic
system,x is typically a physical observable related to th
concentrations of the component species. Sincexi 11 is given
by Eq. ~2! for iteration i 11 and Eq.~1! determines the po-
sition of the (j i 11, h i 11) state from the (j i , h i) state, know-
ing (j i , h i) is sufficient to predictxi 11 provided that the
time-independent system parameters are known. Hence,
614© 1997 American Institute of Physics
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615V. Petrov and K. Showalter: Prediction, filtering, and control
xi 115P~j i ,h i !, ~3!

whereP is a linear function and (j i , h i) can be found from
the measurement of two independent observables at itera
i . If we have fewer independent observables than the num
of internal degrees of freedom, the prediction is still possi
using time-delayed readings of the available observable8,9

For a single observablex in the two-dimensional case, Eq
~1! and ~2! for iteration i 21 give

xi 215lj
21tjj i1lh

21thh i . ~4!

Equations~2! and ~4! can be solved to express (j i , h i) in
terms of (xi , xi 21),

S j i

h i
D5LW ~xi ,xi 21!, ~5!

whereLW is a linear function of its arguments. From Eqs.~3!
and~5!, we can now express the observable at iterationi 11,

xi 115P~xi ,xi 21!, ~6!

where P is a linear function that allows prediction of th
system evolution based on the previous readings.

Equation~6! is valid only for a two-variable linear sys
tem. An analogous equation can be derived, however, f
linear m-dimensional system, where Eq.~6! is modified by
the additional termsxi 22, xi 23 , . . . , xi 2m11. Furthermore, if
the dynamics of the system is governed by nonlinear eq
tions of motion, the functionP is linear only in a small

FIG. 1. Schematic representation of the nonlinear manifolds of a gen
two-variable system. The state of the system (j i ,h i) is not observed di-
rectly; however, it can be reconstructed from consecutive readings of
servablex as the system evolves from the previous state (j i 21 ,h i 21). As a
result, the future state (j i 11 ,h i 11) and the corresponding observablexi 11

can be predicted from the observations ofxi andxi 21.
Chaos, Vol. 7,
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neighborhood of the steady state where the linear appr
mation is valid. As the range is increased into the nonlin
regime, we expectP to become a nonlinear mapping. In
highly nonlinear regime, more than two delayed readin
may be necessary to correctly predict the behavior in
single-valued fashion9 due to twisting of the manifolds. For a
multidimensional system with an unknown dimensionali
the following form for the mapping is assumed:

xi 115P~xi ,xi 21 , . . . ,xi 2m11!, ~7!

wherem is the dimensionality of the embedding space. T
form is well known from time-series prediction theory1

however, we have taken a somewhat different approac
our development that will prove to be useful in the sub
quent development of nonlinear filtering and control. T
function P can be thought of as a nonlinear hypersurface
the phase space of delayed variables. Several technique
be used to estimateP andm from time series when the exac
equations governing the dynamics are not known.

To illustrate the implementation of the prediction tec
nique we consider a model for chemical chaos,10 which is a
three-variable version of the autocatalator model:11

da/dt5m~k1g!2ab22a,

sdb/dt5ab21a2b, ~8!

ddg/dt5b2g.

Here,a, b, andg are dimensionless concentrations ands, d,
m, andk are the dimensionless parameters of the model.
s50.015,d51, m50.301, andk52.5, the behavior is cha
otic with each of the concentrations exhibiting highly no
linear behavior.12 We use Eqs.~8! only to generate time se
ries of the variablea, which we transform to log(a) to
simulate a realistic measurement of the concentration by
ion-selective electrode. Thus, we construct the nonlin
function P using the ‘‘observable’’ log(a) from a reference
set of 8000 data points generated by the model. The val
tion of the prediction model—i.e., the comparison of the p
dicted behavior with the ‘‘true’’ dynamics—is carried ou
using data generated directly from Eqs.~8!.

A local linear regression method13 was used for the in-
terpolation ofP in phase space, where, assumingP is a dif-
ferentiable surface, we draw the tangential plane to the
face at any point to provide a first-order approximation of t
neighborhood of that point. A set of tangential planes dra
at a number of grid points in phase space can therefore
used as a first-order approximation of the entire surfaceP.
The storage of the surface parameters at all selected
points may require a prohibitively large amount of data if t
dimensionality of the embedding space is large; we there
retain the reference data set in order to approximate the
face at any point when it is required by the algorithm. Th
to approximate the function P at some point
x5(xi , . . . ,xi 2m11) we find thek points from the reference
data set closest tox. This requires a sorting routine to b
carried out on the reference data set every time we wan
useP to make a prediction. The nearest neighbors found
the sorting are then used for approximating the surface at

al

b-
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616 V. Petrov and K. Showalter: Prediction, filtering, and control
point of interest, and, once the parameters of the plane
determined,xi 11 is calculated fromx via Eq. ~7!. In the
absence of noise,m points are sufficient to draw a hype
plane inm-dimensional space. If noise is present, it is des
able to have more data points and use a least-squares fi
procedure to determine the parameters of the plane. On
over-determined data set of the present example, we use
robust technique of singular-value decomposition14 to find
the approximating plane.

The optimal number of neighborsk depends on the non
linearity of the surface and density of points in the region
phase space where the approximation is made. Althoug
larger neighborhood allows more points to be used in ca
lating the approximation, it may be best to use a sma
neighborhood in regions with high local curvature, since
remote points may introduce a systematic error due to
deviation of the surface from the plane. The optimal appro
mation should therefore take into account different cur
tures of the surface in different regions of phase space. H
we use the simplified approach of selecting a constant n
ber of approximating neighbors throughout phase space.
culating the prediction error as the standard deviation of
predicted signal from the original time series as a function
different numbers of approximating neighbors, we found t
k53m gave the lowest error for this example. This particu
choice depends not only on the curvature of theP surface but
also on the number of reference points used in the appr
mating data set. Our choice of 8000 points was based on
assumption that 10m points are necessary for a reasona
representation of them-dimensional surface using an equa
distributed mesh of points with 10 points per dimension. T
prediction error decreases as the overall number of the
points increases; however, the computational and storag
quirements place an upper limit on the number of points t
can be used in defining the prediction surface.

Figure 2 shows an application of the prediction tec
nique for a chaotic time series of the autocatalator mo
Eqs.~8!. The prediction begins att 5 0.0 and relies only on

FIG. 2. Prediction of a chaotic time series of the three-variable autoca
tor, Eqs.~8!. The prediction nonlinear surfaceP was approximated from an
earlier recorded data set by using a local linear interpolation with 12 nea
points.
Chaos, Vol. 7,

Downloaded 06 Nov 2003 to 128.83.156.150. Redistribution subject to AI
re

-
ing
he
the

f
a
-
r

e
e

i-
-
re,

-
al-
e
f
t

r

i-
he
e

e
ta

re-
t

-
l,

information stored fort,0. Equation~7! is used in the fol-
lowing form:

x~ tp!5P~x~0!,x~2t!,x~22t!,x~23t!!, ~9!

where x5 log (a), t50.8, and 0,tp,10. Equation~9! is
expressed in terms of four time-delay coordinates, givin
dimension that was found to produce the smallest predic
error. This is consistent with an estimation of the embedd
dimension from the fractal dimension,15 D52n21, which
should be between 4 and 5 since the dimension of the att
tor is known to be greater than 2 but less than 3.10 A small
amount of Gaussian noise~60 db signal-to-noise ratio! was
also added to the time series. A divergence of the predic
behavior from the ‘‘true’’ behavior is observed in Fig. 2 fo
t.7, which is anticipated with the presence of a positi
Lyapunov exponent.

One can also define the nonlinear hypersurface us
artificial neural networks. We found, however, that the loc
linear approximation results in a smaller prediction er
than a feed-forward neural network with up to 100 sigmoid
neurons.16

III. FILTERING

We now assume there is another observable that is al
projection of the system dynamics but with a different set
projection coefficients. For our general two-dimensional s
tem, the second observabley is given by

yi5r jj i1r hh i , ~10!

wherer j and r h are the projection coefficients. By combin
ing Eqs.~5! and ~10!, yi can be expressed as a function
delayed readings ofx,

yi5F~xi ,xi 21!, ~11!

whereF is a linear function. Equation~11! is known as a
finite impulse response~FIR! filter, where the filtered signa
y depends only on a finite length of the signalx. For nonlin-
ear multidimensional systems, we expand Eq.~11! to

yi5F~xi ,xi 21 , . . . ,xi 2m11!, ~12!

whereF is a nonlinear function of its arguments and can
thought of as a high-dimensional surface in (yi ,
xi , . . . ,xi 2m11) space. We can therefore establish a dir
relation between different observable variables of a nonlin
system, since these variables represent projections from
same manifolds of the system.

We demonstrate the filtering method by constructing
F surface with 8000 data points generated from the autoc
lator model in the chaotic regime. The construction ofF
requires the time series of two observables: we cho
x5 log(a) and y5 log(b) to simulate a chemical system
monitored with two ion-specific electrodes. Once the surfa
is available, the behavior ofy at any time can be found from
the corresponding time series ofx, even for chaotic behavio
where the trajectory in phase space never exactly rep
itself. Figure 3 shows the prediction ofy5 log(b) from an
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617V. Petrov and K. Showalter: Prediction, filtering, and control
arbitrary time series ofx5 log(a). We see that the filtered
values of log(b) correspond to the ‘‘true’’ values with a ver
good accuracy.

In general, the embedding dimension used in Eq.~12! is
not known; however, it can be determined during the c
struction ofF wheny is available by measuring the filterin
error for different values ofm. The optimal dimension is
selected by determining the value above which the erro
not significantly decreased. This value ofm does not neces
sarily reflect the actual embedding dimension of the syst
but, rather, the embedding dimension that gives the bes
construction ofF. As shown in Figure 4,m depends on othe
factors, including the level of noise present in the time se
as well as the number of data points used in the surf
construction.

Even though the time series of both thex andy variables
are required during the construction stage, the nonlinear fi
can be very useful when the second variabley is difficult to
obtain. Thus, it is necessary to measurey together withx in
only one experiment; the filter can then be used to generay
whenever this observable might be difficult or impossible
measure. Unlike the linear filter, Eq.~12! allows the extrac-
tion of signals that have similar fundamental frequencies
that are mixed together in a nonlinear fashion.

The mixture of signals generated by deterministic no
linear systems results in an effectively new dynamical s
tem, but each signal can also be thought of as a nonlin
projection of the internal dynamics of the corresponding s
system. This concept is demonstrated in Fig. 5, where a s
tooth signal is filtered out of a nonlinear mixing of this sign
with a chaotic time series from the autocatalator model,
(a). The filtered signal is in good agreement with the ‘‘true
signal of the saw-tooth subsystem, although the erro
slightly larger than in the previous example shown in Fig.
The dynamics of the mixed system corresponds to the c
bination of the independent nonlinear systems and, co

FIG. 3. Filtering output from a chaotic time series of the autocatalator, E
~8!. Solid line shows the ‘‘true’’ value of log(b); dots show output of filter
designed to approximate log(b) at selected time intervals. Dashed lin
shows the value of log(a), the input of the nonlinear filter. The filtering
surfaceF ~of dimension 5! was constructed from the previously collecte
data points from time series of log(a) and log(b).
Chaos, Vol. 7,
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quently, the optimal embedding dimension in Eq.~12! in-
creased to a value of 9.17

IV. CONTROL

The concept of constructing a nonlinear surface fro
time series can also be used in the control of nonlinear
namical systems.18 Control assumes the availability of a sy
tem parameterp to which perturbations can be applied
alter the system dynamics. We again consider a general
dimensional linear system for our development. To move
system from the current state (j i , h i) to a given target state
(j i 12 ,h i 12), a sequence of two control perturbations
required.5 Since the sequence of perturbations is unique fo
given pair of current and target states, we can write a con
equation for the first perturbation of the sequence in term
these states:

pi 115JS S j i

h i
D ,S j i 12

h i 12
D D , ~13!

whereJ is a linear function. Even though a sequence of t
perturbations must be applied before the desired stat
reached, it is necessary to explicitly determine only the fi
perturbation since the second perturbation can be calcul
at the next iteration using the same expression with the
dated readings.

We now consider defining the system state in a man
analogous to Eq.~5! in order to obtain a general expressio
for the control perturbations in terms of the delayed obs
vations. There are two complications, however, that prev
us from using Eq.~5! directly. First, the control perturbation

s.

FIG. 4. Error of the filtered signal log(b) predicted from log(a) compared
to the ‘‘true’’ log(b) as a function of the assumed dimensionm and the
number of reference points used to approximate the filtering surfaceF. The
series of dots corresponds to 1000 reference points, the squares to
points, and the triangles to 10 000 points used to approximateF.
No. 4, 1997
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618 V. Petrov and K. Showalter: Prediction, filtering, and control
applied to the system shift the vector field in phase space
therefore introduce an additional variable that must be
cluded in the description. Second, it is not possible to
press the target state in Eq.~13! in terms of delayed reading
since these readings will depend upon the control pertur
tions applied during the transition sequence. To avoid t
complication, we will define the target state in terms of t
time-forwarded sequence.

Consider the system trajectory in the linear neighb
hood of a fixed point. If a perturbation is applied to th
system at iterationi and maintained constant and equal
pi 11 during one sampling period, the system state at itera
i 11 is given by

j i 115ljj i1~12lj!aj pi 11 ,
~14!

h i 115lhh i1~12lh!ah pi 11 ,

where aj5]js /]p and ah5]hs /]p give the shift of the
steady state in thej and h directions due to the
perturbation.5 Equation~14!, together with equations for the
observablex at iterationsi and i 11,

xi5tjj i1thh i ,
~15!

xi 115tjj i 111thh i 11 ,

are sufficient to solve for (j i , h i) in terms of the time-
forwarded readings and applied perturbations:

S j i

h i
D5NW ~xi ,xi 11 ,pi 11!, ~16!

FIG. 5. Filtering output of a saw-tooth signal~dots! from the filter input
~dashed line! given by ~log(a)1y)210.5, wherey represents a saw-tooth
function with an amplitude of 0.3 and log(a) is a chaotic signal from Eqs.
~8!. The ‘‘true’’ saw-tooth signal is shown by the solid line. An embeddin
dimension of 9 was selected for the nonlinear filter surfaceF.
Chaos, Vol. 7,
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whereNW is a linear function. In addition, Eqs.~14! and~15!
can be solved for the state (j i 11 ,h i 11):

S j i 11

h i 11
D5MW ~xi 11 ,xi ,pi 11!, ~17!

whereMW is another linear function. Shifting the index in E
~17! from i 11 to i yields

S j i

h i
D5MW ~xi ,xi 21 ,pi !. ~18!

The system state (j i , h i) in Eq. ~16! and Eq.~18! is ex-
pressed in terms of time-forwarded and time-delayed re
ings and perturbations. Shifting the index fromi to i 12 in
Eq. ~16! and substituting this, together with Eq.~18!, into Eq.
~13! yields a control law of the form

pi 115C~xi ,xi 21 ,pi ,xi 12 ,xi 13 ,pi 13!, ~19!

whereC is a linear control function. Notice that the contr
perturbationpi 11 depends only on the readings and pert
bations that occur beforepi 11 is applied and after the contro
sequencepi 11, pi 12 is complete. This allows us to define th
target state in terms of the desired values of the observab
the end of the control sequence. The stabilization of an
stable steady state, for example, should result in the dyn
ics observed at this state in the absence of the exte
perturbations; the desired state is thereforexi 12

5 xi 135xsteady stateand the perturbationpi 1350.
For anm-dimensional nonlinear system, Eq.~19! can be

generalized to

pi 115C~xi ,xi 21 , . . . ,xi 2m11 ;pi ,pi 21 , . . . ,pi 2m12 ;

xi 1m , . . . ,xi 12m21 ;pi 1m11 , . . . ,pi 12m21!, ~20!

where C is a nonlinear surface in the extended space t
includes time-delayed and time-forwarded perturbations
observations. The complexity of Eq.~20! does not prevent it
from being robust in the implementation of control. It is n
even necessary to know the exact position of the steady s
if Eq. ~20! is rearranged to express the target state in term
differences of the observable at subsequent iterations.18 The
control law then takes the form

pi 115S~xi ,xi 21 , . . . ,xi 2m11 ;pi ,pi 21 , . . . ,pi 2m12 ;

~xi 1m112xi 1m!, . . . ,~xi 12m2xi 12m21!;

pi 1m11 , . . . ,pi 12m!, ~21!

whereS is a nonlinear function formulated specifically fo
steady state stabilization.

Figure 6 shows an application of the method to stabil
the unstable steady state and thereby suppress chaotic b
ior in the autocatalator, where perturbations to the sys
parameterm in Eqs. ~8! were calculated from Eq.~21!. To
approximate theS surface, 1000 random perturbations we
applied to the parameterm and the system responses we
collected. The process of stabilization was then carried
by substituting them delayed readings andm21 delayed
perturbations, which define the current state, into the first
No. 4, 1997
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619V. Petrov and K. Showalter: Prediction, filtering, and control
of terms of theS function @upper line of Eq.~21!#. The de-
sired behavior of the target state yields zeros for the sec
set of terms inS @lower line in Eq.~21!#. With these substi-
tutions, theS function returns the first control perturbatio
The second control perturbation is returned on the next it
tion, and so on. After completion of them-perturbation
cycle, the system will reside very close to the objective st
Figure 6~a! shows a time series of the stabilization proc
dure, where the sampling intervals of the system are in
cated by the dots. The corresponding sequence of pertu
tions is shown in Fig. 6~b!. For this example, the fastes
convergence was found to occur withm54. A nonideal con-
vergence of the algorithm was observed due to the rela
scarcity of data points in the 16-dimensional embedd
space of theS surface.

The same algorithm has been successfully applied in
control of convective instabilities in a liquid bridg
experiment.19 The control function for the four-dimensiona
dynamics was reconstructed from 500 data points, allow
the stabilization of periodic behavior in the quasiperiod
regime.

V. CONCLUSION

We have presented algorithms for nonlinear predicti
filtering and control based on the construction of appropr
invariant functions directly from time series. Our approa
has been first to demonstrate the construction of a lin
invariant function based on time-series measurements in
linear regime. We then assume, based on arguments of f
tional continuity, that the invariant function can be extend
into nonlinear regimes. The appropriate nonlinear funct

FIG. 6. Suppression of chaotic behavior and stabilization of the unst
steady state of Eqs.~8! using the control surfaceS. ~a! Time evolution of
log(a) shown by the solid line; intervals when the system was samp
shown by dots.~b! Sequence of perturbations for controlling the system. T
perturbation sequence was started att 5 7.8. Each perturbation, which is
kept constant for the duration of the sampling interval, was calculated f
the S surface using the previous 4 readings of log(a) and the previous 3
perturbations. Aftert 5 13, the system resides very close to the station
state and only very small perturbations are necessary to maintain the sy
at this state.
Chaos, Vol. 7,
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allows the prediction of future behavior, defines function
relations between evolving system variables~or the related
system observables!, or permits dynamic control of behavio
by parameter perturbations.

The nonlinear filtering method could be particularly e
fective in situations where two signals are mixed with a
proximately the same frequencies but different types of n
linearities. Consider, for example, the extraction of t
heartbeat signal of a fetus from the EKG of the mothe20

TheF surface might first be constructed from the EKG of t
mother and ultrasound measurements of the fetus heart
During subsequent checkups, only the EKG of the mot
would be required since the heartbeat of the fetus could
simply filtered out of this signal. Of course, this approa
would be strictly applicable only if the general nature of t
heartbeats of the mother and fetus did not change over t
The changing period and amplitude of the heartbeat of
fetus as it matures would undoubtedly diminish the precis
of the technique. One possible approach might be to c
struct anF surface based on the signals from a pool of p
tients for each month of pregnancy.

The nonlinear control algorithm can be used for select
switching between remote coexisting states of nonlinear
namical systems. For example, two bistable reactions car
out in coupled reactors may exhibit four different stab
steady states.21 A single parameter, such as the couplin
strength or reactor residence time, could be used to move
system between any of these four states.

The fact that prediction, filtering and control can be fo
mulated from previously observed responses in terms o
surface—or, effectively, a look-up table—suggests that al
these tasks could be carried out in a similar manner by n
ronal networks of living systems.
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