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Prediction, filtering and control of nonlinear systems is formulated in terms of corresponding
nonlinear surfaces in the phase space of delayed system readings and control parameters. The
construction of these surfaces from time series and their use is demonstrated with a simple chemical
model in the chaotic regime. @997 American Institute of Physids$$1054-150(07)00404-1

Advances in controlling dynamical systems, stimulated in
recent years by the challenge of chaotic dynamics, have
been largely based on the development of linearized mod-
els from time series! Linear control techniques for low-
dimensional  chaotic  systems, such as the
Ott—Grebogi-Yorke? method, have been successfully ap-
plied in a variety of physical, chemical, and biological
settings® Progress has also been made in the development
of linear methods for controlling high-dimensional
systems*’ Nonlinear techniques, where measurements
and perturbations are not restricted to a linear region
around the state of interest, are less well developed. We
present a unified approach for nonlinear prediction, fil-
tering and control based on the construction of appropri-
ate nonlinear hypersurfaces directly from time-series
readings. A three-variable model for chemical chaos is
used to demonstrate the approach, which permits global
characterization and control of dynamical behavior with-
out knowing the underlying mechanistic features or gov-
erning equations of the dynamical system.

I. INTRODUCTION

The prediction of the future behavior of dynamical sys-

jectory of a system to a desired goal in phase space. The goal
is typically an unstable steady or periodic state, which, once
it is realized, is then stabilized by the algorithm. The control
objective or goal can also be some dynamical pattern not
found in the autonomous system. In each case, the control
objective is approached in a minimum number of steps by
the algorithm.

II. PREDICTION

Prediction of the future evolution of a multidimensional
system is closely related to the ability to reconstruct the sys-
tem state from available observations. The evolution of the
system can then be described in terms of the coordinates
along the system manifolds. When the trajectory is sampled
at even time intervals, the readings of the coordinates at each
iteration represent the state of the system at that iteration.

Consider a general two-dimensional nonlinear system,
where €, ») are the coordinates along the system manifolds.
The manifolds originating from the eigenvectors of a particu-
lar steady state are shown schematically in Figure 1. We first
consider only a small region around the steady state where a
linear description can be used to characterize the time evo-
lution of the discretized system:

tems is a broadly discussed topic due to the many possibili-
ties for practical applications. We consider the problem of ~ &i+1=Nebiv Mi41=Ay7i. @)
time-series prediction as an introduction to our method ofHere,&;, »; are the components of the vector defining the tip
nonlinear surface reconstruction. The technique is demoref the system trajectory in phase spake, \, are the ei-
strated by constructing the prediction surface from a chaotigenvalues along the corresponding eigenvectors, &na)
time series and then using this surface to predict future be=(0, 0) are the coordinates of the steady state. Usually the
havior. behavior of the system variables cannot be observed directly
Nonlinear filtering allows the reconstruction of one sys-but, rather, is projected on some variak|avhich we denote
tem observable from delayed readings of a second systethe observable variable:
observable. In our chemical model, the system observables
are related to the concentrations of the chemical species of Xi=te&ittmi, 2
the reaction. The concentration of one component might baheret, andt, are the projection coefficients. In a chemical
measured, for example, by monitoring the system with arsystem,x is typically a physical observable related to the
ion-selective electrode. This signal can then be used to catoncentrations of the component species. Siicg is given
culate the precise concentration of another component of they Eq. (2) for iterationi+1 and Eq.(1) determines the po-
reaction at any time, even when the reaction is in the chaotisition of the ¢, 1, 7, 1) State from the §;, ;) state, know-
regime and the system trajectory is nonrepeating. ing (&, ») is sufficient to predictx; ., provided that the
Nonlinear control provides the means to direct the tratime-independent system parameters are known. Hence,
Chaos 7 (4), 1997 1054-1500/97/7(4)/614/7/$10.00

© 1997 American Institute of Physics 614

Downloaded 06 Nov 2003 to 128.83.156.150. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



V. Petrov and K. Showalter: Prediction, filtering, and control

(§i+1’ T]i+1)

(& M)

(G i)

FIG. 1. Schematic representation of the nonlinear manifolds of a general

two-variable system. The state of the systegn, ;) is not observed di-

rectly; however, it can be reconstructed from consecutive readings of ob-

servablex as the system evolves from the previous stdte {,7;_1). As a
result, the future state¢(,,,7;+1) and the corresponding observabie ;
can be predicted from the observationsxpfandx; .

Xi+1=1(& 7)), 3
wherell is a linear function andg;, #;) can be found from

615

neighborhood of the steady state where the linear approxi-
mation is valid. As the range is increased into the nonlinear
regime, we expecP to become a nonlinear mapping. In a
highly nonlinear regime, more than two delayed readings
may be necessary to correctly predict the behavior in a
single-valued fashictdue to twisting of the manifolds. For a
multidimensional system with an unknown dimensionality,
the following form for the mapping is assumed:

1Xi —m+ l) ’ (7)

wherem is the dimensionality of the embedding space. This
form is well known from time-series prediction theory;
however, we have taken a somewhat different approach in
our development that will prove to be useful in the subse-
quent development of nonlinear filtering and control. The
function P can be thought of as a nonlinear hypersurface in
the phase space of delayed variables. Several techniques can
be used to estimate andm from time series when the exact
equations governing the dynamics are not known.

To illustrate the implementation of the prediction tech-
nique we consider a model for chemical chabsshich is a
three-variable version of the autocatalator maddel:

Xi+1=P(Xi Xi—1, - -

daldr=pu(k+v)—aB’—a,
odpldr=aB?+ a— B, (8)
sdyldr=B—1.

Here,«, B, andy are dimensionless concentrations and,

M, andx are the dimensionless parameters of the model. For
0=0.015,6=1, ©=0.301, andk=2.5, the behavior is cha-
otic with each of the concentrations exhibiting highly non-
linear behaviot? We use Eqs(8) only to generate time se-
ries of the variablea, which we transform to log¢) to

the measurement of two independent observables at iteratigiimulate a realistic measurement of the concentration by an
i. If we have fewer independent observables than the numbésn-selective electrode. Thus, we construct the nonlinear
of internal degrees of freedom, the prediction is still possiblefunction P using the “observable” logé) from a reference
using time-delayed readings of the available observébles. set of 8000 data points generated by the model. The valida-
For a single observabbe in the two-dimensional case, Egs. tion of the prediction model—i.e., the comparison of the pre-

(1) and (2) for iterationi —1 give
Xi—1=Ng &N (4)

Equations(2) and (4) can be solved to express;( »;) in
terms of &;, x;_4),

& -

nl_):L(Xi Xi—1)s (5

whereL is a linear function of its arguments. From E¢3)
and(5), we can now express the observable at iteratiod,

Xi+1=P(X,X{-1), (6)

where P is a linear function that allows prediction of the

system evolution based on the previous readings.

Equation(6) is valid only for a two-variable linear sys-
tem. An analogous equation can be derived, however, for

linear m-dimensional system, where E(f) is modified by
the additional termg; _,, X _3, - . ., Xj _m+ 1. Furthermore, if

dicted behavior with the “true” dynamics—is carried out
using data generated directly from Eg8).

A local linear regression methbtiwas used for the in-
terpolation ofP in phase space, where, assumings a dif-
ferentiable surface, we draw the tangential plane to the sur-
face at any point to provide a first-order approximation of the
neighborhood of that point. A set of tangential planes drawn
at a number of grid points in phase space can therefore be
used as a first-order approximation of the entire surface
The storage of the surface parameters at all selected grid
points may require a prohibitively large amount of data if the
dimensionality of the embedding space is large; we therefore
retain the reference data set in order to approximate the sur-
face at any point when it is required by the algorithm. Thus,
to approximate the function P at some point
&2=(X;, ... Xi_m+1) We find thek points from the reference
data set closest tg. This requires a sorting routine to be
carried out on the reference data set every time we want to

the dynamics of the system is governed by nonlinear equaiseP to make a prediction. The nearest neighbors found in

tions of motion, the functiorP is linear only in a small

the sorting are then used for approximating the surface at the
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-02 ; K ‘ : information stored fot<0. Equation(7) is used in the fol-
lowing form:

X(tp) =P(x(0),X(—7),X(—27),X(—37)), 9

wherex=log (a), 7=0.8, and 0<t,<10. Equation(9) is
expressed in terms of four time-delay coordinates, giving a
dimension that was found to produce the smallest prediction
error. This is consistent with an estimation of the embedding
dimension from the fractal dimensidh,D=2n—1, which
should be between 4 and 5 since the dimension of the attrac-
tor is known to be greater than 2 but less thal? 8 small
amount of Gaussian noig€0 db signal-to-noise ratjovas

-0 ‘ - ‘ . also added to the time series. A divergence of the predicted

1 behavior from the “true” behavior is observed in Fig. 2 for
t>7, which is anticipated with the presence of a positive

FIG. 2. Prediction of a chaotic time series of the three-variable autocatalatyapunov exponent.

e B on o3 ey ONe can alSo define the nonlinear hypersurface using

points. artificial neural networks. We found, however, that the local
linear approximation results in a smaller prediction error
than a feed-forward neural network with up to 100 sigmoidal

point of interest, and, once the parameters of the plane areeurons:®

determined,x;, ; is calculated fromx via Eq. (7). In the

absence of noisen points are sufficient to draw a hyper-

plane inm-dimensional space. If noise is present, it is desir-|, FILTERING

able to have more data points and use a least-squares fitting

procedure to determine the parameters of the plane. On the We now assume there is another observable that is also a

over-determined data set of the present example, we used tpeojection of the system dynamics but with a different set of

robust technique of singular-value decompositforo find projection coefficients. For our general two-dimensional sys-

Loga

the approximating plane. tem, the second observahles given by
The optimal number of neighboksdepends on the non- B N (10)
linearity of the surface and density of points in the region of Yi=re&itrym,

phase space where the approximation is made. Although wherer, andr, are the projection coefficients. By combin-
larger neighborhood allows more points to be used in calcuing Egs.(5) and (10), y; can be expressed as a function of
lating the approximation, it may be best to use a smalledelayed readings of,
neighborhood in regions with high local curvature, since the
remote points may introduce a systematic error due to the Yi=FXiXi-1), (11
deviation of the surface from the plane. The optimal approxiwhereF is a linear function. Equatiol1) is known as a
mation should therefore take into account different curvafinite impulse responsé-IR) filter, where the filtered signal
tures of the surface in different regions of phase space. Herg, depends only on a finite length of the sigmalFor nonlin-
we use the simplified approach of selecting a constant numear multidimensional systems, we expand Bd) to
ber of approximating neighbors throughout phase space. Cal- yi= F(X %, X ) (12
culating the prediction error as the standard deviation of the : DAL RimmE L
predicted signal from the original time series as a function ofvhereF is a nonlinear function of its arguments and can be
different numbers of approximating neighbors, we found thathought of as a high-dimensional surface iny; (
k=3m gave the lowest error for this example. This particularx;, . .. X;_n+1) Space. We can therefore establish a direct
choice depends not only on the curvature offheurface but  relation between different observable variables of a nonlinear
also on the number of reference points used in the approxisystem, since these variables represent projections from the
mating data set. Our choice of 8000 points was based on ttreame manifolds of the system.
assumption that 10 points are necessary for a reasonable = We demonstrate the filtering method by constructing the
representation of then-dimensional surface using an equally F surface with 8000 data points generated from the autocata-
distributed mesh of points with 10 points per dimension. Thdator model in the chaotic regime. The construction Fof
prediction error decreases as the overall number of the dataquires the time series of two observables: we choose
points increases; however, the computational and storage rg&=log(«) and y=Ilog(8) to simulate a chemical system
quirements place an upper limit on the number of points thamonitored with two ion-specific electrodes. Once the surface
can be used in defining the prediction surface. is available, the behavior gf at any time can be found from
Figure 2 shows an application of the prediction tech-the corresponding time seriesxfeven for chaotic behavior
nigue for a chaotic time series of the autocatalator modelwhere the trajectory in phase space never exactly repeats
Egs.(8). The prediction begins at= 0.0 and relies only on itself. Figure 3 shows the prediction gf=log(B) from an
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FIG. 3. Filtering output from a chaotic time series of the autocatalator, Eqs
(8). Solid line shows the “true” value of log§); dots show output of filter
designed to approximate log) at selected time intervals. Dashed line
shows the value of log(), the input of the nonlinear filter. The filtering M . . . ‘
surfaceF (of dimension % was constructed from the previously collected 10 0 P 4 6 8 10

data points from time series of logf and log(8).

FIG. 4. Error of the filtered signal log) predicted from log§) compared
arbitrary time series ok=log(a). We see that the filtered t© the “true” log(B) as a function of the assumed dimensionand the

« ” : number of reference points used to approximate the filtering suFfatée
values of logf5) correspond to the “true” values with a very series of dots corresponds to 1000 reference points, the squares to 3000

good accuracy. _ . . _ . points, and the triangles to 10 000 points used to approxifRate
In general, the embedding dimension used in @4Q) is

not known; however, it can be determined during the con-
struction ofF wheny is available by measuring the filtering quently, the optimal embedding dimension in Ef2) in-
error for different values ofn. The optimal dimension is creased to a value ofd.
selected by determining the value above which the error is
not_5|gn|f|cantly decreased. Th|§ valgemfdpes not neces- IV. CONTROL
sarily reflect the actual embedding dimension of the system,
but, rather, the embedding dimension that gives the best re- The concept of constructing a nonlinear surface from
construction of-. As shown in Figure 4mn depends on other time series can also be used in the control of nonlinear dy-
factors, including the level of noise present in the time seriemamical system& Control assumes the availability of a sys-
as well as the number of data points used in the surfaceem parametep to which perturbations can be applied to
construction. alter the system dynamics. We again consider a general two-
Even though the time series of both thandy variables  dimensional linear system for our development. To move the
are required during the construction stage, the nonlinear filtesystem from the current staté;( »;) to a given target state
can be very useful when the second variaplis difficult to (& .-.7.2), & sequence of two control perturbations is
obtain. Thus, it is necessary to measyr®gether withx in  required® Since the sequence of perturbations is unique for a
only one experiment; the filter can then be used to gengrate given pair of current and target states, we can write a control
whenever this observable might be difficult or impossible toequation for the first perturbation of the sequence in terms of
measure. Unlike the linear filter, EL2) allows the extrac- these states:
tion of signals that have similar fundamental frequencies and £
that are mixed together in a nonlinear fashion. pi+1:E(( !
The mixture of signals generated by deterministic non- i
linear systems results in an effectively new dynamical syswhereg is a linear function. Even though a sequence of two
tem, but each signal can also be thought of as a nonlinegrerturbations must be applied before the desired state is
projection of the internal dynamics of the corresponding subreached, it is necessary to explicitly determine only the first
system. This concept is demonstrated in Fig. 5, where a savperturbation since the second perturbation can be calculated
tooth signal is filtered out of a nonlinear mixing of this signal at the next iteration using the same expression with the up-
with a chaotic time series from the autocatalator model, loglated readings.
(a). The filtered signal is in good agreement with the “true” We now consider defining the system state in a manner
signal of the saw-tooth subsystem, although the error isnalogous to Eq5) in order to obtain a general expression
slightly larger than in the previous example shown in Fig. 3.for the control perturbations in terms of the delayed obser-
The dynamics of the mixed system corresponds to the comations. There are two complications, however, that prevent
bination of the independent nonlinear systems and, consets from using Eq(5) directly. First, the control perturbations

(§i+2

Mi+2

) , (13
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15 : : : whereN is a linear function. In addition, Eq$l4) and(15)
can be solved for the stat&;( ,7,.1):
2 i §iv1|_ -
(Logai+y) +0.5 l|', ; ( I,Jr ): M(Xi4+1,Xi ,Pi+1), (17
\ H " } Ni+1
10 n X hon - . . o . :
it y Y " :‘\‘ whereM is another linear function. Shifting the index in Eq.
. E \ ?‘\ i i ‘\‘ N :\\ :".l i\‘ (17) fromi+1 toi yields
' ! (AN KERY H N Vv
\ : \ E ‘\\ : \\\ ;" Y ‘\\ : ‘\‘i \\\ gi _ M (X' X ) (18)
05 L \\: U ) ~ \\‘: \: \ S 7i i1 Xi—1,Pi)-

The system state&(, #;) in Eq. (16) and Eq.(18) is ex-
pressed in terms of time-forwarded and time-delayed read-
ings and perturbations. Shifting the index fronto i +2 in

Eq. (16) and substituting this, together with E3d.8), into Eq.

(13) yields a control law of the form

Pi+1=C(X,Xi—1,Pi 1 Xi+2:Xi+3:Pi+3), (19

whereC is a linear control function. Notice that the control
_05 1 L I 1 . .
perturbationp; , ; depends only on the readings and pertur-
bations that occur beforg . ; is applied and after the control
sequence; . 1, P+ IS complete. This allows us to define the
target state in terms of the desired values of the observable at
FIG. 5. Filtering output of a saw-tooth signédots from the filter input ~ the end of the control sequence. The stabilization of an un-
(dashed linggiven by (log(a) +y)?+0.5, wherey represents a saw-tooth  stable steady state, for example, should result in the dynam-
function with an amplitude of 0.3 and log} is a chaotic signal from Egs. ics observed at this state in the absence of the external
(8). The “true” saw-tooth signal is shown by the solid line. An embedding . . . )
dimension of 9 was selected for the nonlinear filter surface perturbations; the desired State' is thereforg . ,
= Xj+3= Xsteady state@nd the perturbatiop; , 3=0.
For anm-dimensional nonlinear system, Ed9) can be
applied to the system shift the vector field in phase space ar@fneralized to
thereforg introduce an additional vgrlgble that must be iy =C(Xi X 11+« Xieme1iPisPiots - Piomiz:
cluded in the description. Second, it is not possible to ex-

press the target state in Ed.3) in terms of delayed readings Xitmy - Xi+2am—1:Pi+m+1s - - - Pi+2m-1), (20
;ince thes_e readi_ngs will depe_r_1d upon the control pe_rturb_q/'vherec is a nonlinear surface in the extended space that
tions gpp!|ed durlng the .transmon sequence. To avoid thl?ncludes time-delayed and time-forwarded perturbations and
gompllcatlon, we will define the target state in terms of theobservations. The complexity of E(R0) does not prevent it
tlmeg‘orw_?jrde(t:ihsequetnce.t ‘ectorv in the i iahb from being robust in the implementation of control. It is not

onsider the system frajectory In the finear Nelghbor-y, necessary to know the exact position of the steady state
hood of a fixed point. If a perturbation is applied to the

if Eq. (20) is rearranged to express the target state in terms of

system at iteration and maintained constant and equal 0 jigerences of the observable at subsequent iteratfombe
pi +1 during one sampling period, the system state at iteratior&on,[rOI law then takes the form

i+1 is given by
1= (X Xi—1s e e Xieme 1P Pio1s - - - Pi—mi2;
§i+1:)\§§i+(1_)\§)a§ Pi+1s (14) Pi+1 S( i Ai-1 i-m+1:Pi Pi-1 p|.m+2
Mer=N,m+(1=N,)a, P, (Xi+m+1= Xi+m)y - - - o(Xiv2m™ Xi+2m-1);
where a;= d¢s/dp and e, = dns/dp give the shift of the Pi+mes - Pitam), (21)

steady state in thef and 7 directions due to the \yhereSis a nonlinear function formulated specifically for
perturbatior?. Equation(14), together with equations for the steady state stabilization.

observablex at iterations andi+1, Figure 6 shows an application of the method to stabilize

x=t&+t,m, the unstable steady state and thereby suppress chaotic behav-
7 (15) ior in the autocatalator, where perturbations to the system
parameteru in Egs.(8) were calculated from Eq21). To
are sufficient to solve forg&, ;) in terms of the time- @approximate thes surface, 1000 random perturbations were

Xip1= €t t,mivq,

forwarded readings and applied perturbations: applied to the parameter and the system responses were
collected. The process of stabilization was then carried out
f;.) =N(xi X 1.Pis1)s (16) by substituting them delayed readings anch—1 delayed
I

perturbations, which define the current state, into the first set
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allows the prediction of future behavior, defines functional
relations between evolving system variables the related

Log o / | system observablgsor permits dynamic control of behavior
o8| ] by parameter perturbations.
The nonlinear filtering method could be particularly ef-
-08 | @ 1 fective in situations where two signals are mixed with ap-
proximately the same frequencies but different types of non-
% 50 100 150 linearities. Consider, for example, the extraction of the
0.020 : , heartbeat signal of a fetus from the EKG of the motffer.

TheF surface might first be constructed from the EKG of the
| mother and ultrasound measurements of the fetus heartbeat.
0000 beesrsessannrsssasssssanscsrarsssones l|||| I|||-l'w.-.-.............., During Subsequent Checkupsl On|y the EKG of the mother
i [ would be required since the heartbeat of the fetus could be
oo ®) simply filtered out of this signal. Of course, this approach
-o0m - ool ON . J would be strictly applicable only if the general nature of the
t heartbeats of the mother and fetus did not change over time.
_ _ _ L The changing period and amplitude of the heartbeat of the
FIG. 6. Suppression of _chaotlc behavior and stablllz_anon of th_e unstabl?etus as it matures would undoubtedly diminish the precision
steady state of Eq$8) using the control surfac8. (a) Time evolution of ” - !
log(a) shown by the solid line; intervals when the system was sampledOf the technique. One possible approach might be to con-

shown by dots(b) Sequence of perturbations for controlling the system. Thestruct anF surface based on the signals from a pool of pa-
perturbation sequence was started at 7.8. Each perturbation, which is  tjents for each month of pregnancy.

kept constant for the duration of the sampling interval, was calculated from The nonlinear control algorithm can be used for selective
the S surface using the previous 4 readings of l@y(@and the previous 3 g

perturbations. Aftet = 13, the system resides very close to the stationarySWitching between remote coexisting states of nonlinear dy-

state and only very small perturbations are necessary to maintain the systenamical systems. For example, two bistable reactions carried

at this state. out in coupled reactors may exhibit four different stable
steady state$. A single parameter, such as the coupling

of terms of theS function [upper line of Eq.(21)]. The de- strength or reactor residence time, could be used to move the
) y %ystem between any of these four states.

ir havior of th r ields zeros for th n - S
sired behavior of the target state yields zeros for the seco The fact that prediction, filtering and control can be for-

set of terms irS [lower line in Bq.(21)]. With these subst- mulated from previously observed responses in terms of a

tutions, theS function returns the first control perturbation. surface—or. effectivelv. a look-up table—suaaests that all of
The second control perturbation is returned on the next itera- o Y, P —sugg

tion, and so on. After completion of then-perturbation hese tasks could be carried out in a similar manner by neu-

cycle, the system will reside very close to the objective stater.Onal networks of living systems.

Figure Ga) shows a time series of the stabilization proce-
dure, where the sampling intervals of the system are indiACKNOWLEDGMENTS
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