The Bouncing Jet:
A Newtonian Liquid Rebounding off a Free Surface

Matthew Thrasher,* Sunghwan Jung,† Yee Kwong Pang,‡ Chih-Piao Chuu, and Harry L. Swinney§
Center for Nonlinear Dynamics and Department of Physics,
University of Texas at Austin, Austin TX 78712
(Dated: July 11, 2007)

We find that a liquid jet can bounce off a bath of the same liquid if the bath is moving horizontally
with respect to the jet. Previous observations of jets rebounding off a bath (e.g. Kaye effect)
have been reported only for non-Newtonian fluids, while we observe bouncing jets in a variety
of Newtonian fluids, including mineral oil poured by hand. A thin layer of air separates the bouncing
jet from the bath, and the relative motion replenishes the film of air. Jets with one or two bounces
are stable for a range of viscosity, jet flow rate and velocity, and bath velocity. The bouncing
phenomenon exhibits hysteresis and multiple steady states.

PACS numbers: 47.15.Rq, 47.15.Gf, 47.55.Dz

Keywords:

I. INTRODUCTION

A liquid stream falling onto the free surface of a liquid bath can merge immediately on contact, plunge through
the surface and entrain air [1, 2], coil up like a rope [3], float on the surface prior to coalescing [4], float without
ever coalescing [5], or break into droplets [6]. We report in this paper observations of a jet of Newtonian liquid
bouncing off a horizontally moving surface of a bath of the same liquid. Figure 1 shows a typical bouncing jet
viewed from the side. The jet falls to the bath’s surface, is bent upwards, and undergoes a short flight. After re-
bounding once more off the surface, the stream merges with the bath. In all figures the liquid bath is moving to
the right, and the stream and bath are the same fluid. This paper examines when and how a liquid jet bounces.
The issues that arise in studying the bouncing jet (e.g. non-coalescence, lubrication, and entrainment) are ubiq-
uitous in fluid processing, such as pouring and mold casting. They also are critical in the design of bearings [7],
gas-liquid reactors [8], film coating equipment [9], and metallurgical procedures [6].

Drops of liquid floating and bouncing on the surface of a bath have been studied scientifically for over 125
years [10–13]. On a pond during a light rainfall, splashing raindrops throw up smaller drops, and these smaller
drops often can be seen to sit on the water surface momentarily. During this time of noncoalescence, a thin
layer of air separates each drop from the pond. Noncoalescence can be prolonged (sometimes indefinitely) by
either replenishing the air between the two liquid bodies or slowing the loss of the existing air. This can be
achieved with surfactants [14, 15], vibration [4], micro-gravity [16], a velocity difference between the drop and
bath [7], evaporation [17], thermo-capillarity [17], or by increasing the viscosity of the surrounding medium [18].

FIG. 1: A liquid jet bounces twice before merging with the
bath, which is moving to the right. The jet and bath are
silicone oil of the same viscosity. The upper and lower pictures
were taken from above and from below the bath surface; the
images were not obtained at the same time or the same angle,
so small differences exist. The jet’s image can be seen reflected
on the surface. Parameters: liquid viscosity \( \mu = 102 \text{ mPa s} \)
(about 100 times more viscous than water), jet flow rate \( Q =
0.35 \text{ cm}^3/\text{s} \), falling height \( H = 5.0 \text{ cm} \), and horizontal velocity
of the bath \( V_{\text{bath}} = 15.7 \text{ cm/s} \).

The bouncing of a liquid jet has also been observed
for a fluid of elongating polymers incident at a glancing
angle on a rotating drum [19]. Bouncing also occurs for
a jet of shear-thinning liquid falling onto a pool of the
same liquid; this is called the Kaye effect [20]. While this
effect is visually similar to the bouncing jet phenomenon
presented in this paper, the Kaye effect occurs only in
non-Newtonian fluids [21] (see discussion in Section VI).

Jets of water colliding midair at a glancing angle can
also bounce off each other, because during the collision
they are separated by a layer of air [5, 22]. However,
no systematic study has been conducted of Newtonian
jets bouncing off a bath surface. To measure the condi-
tions necessary for the bouncing of a Newtonian liquid

*Electronic address: thrasher@chaos.utexas.edu
†Current address: Mathematics Department, MIT
‡Current address: Hong Kong University of Science and Technol-
ogy.
§Electronic address: swinney@chaos.utexas.edu
jet, we built an experimental apparatus (Section II), and we found that jets bounce for a wide range of parameters (Section III). By comparing the energies associated with the non-bouncing and bouncing states, we suggest why bouncing is preferred rather than plunging (Section IV). A bouncing jet can easily be reproduced with common materials (Section V). These observations are related to previous work in Section VI.

![Diagram of experimental setup](image)

**FIG. 2:** Experimental setup: a bath of silicone oil is rotated under a falling stream of the same oil. A camera in the laboratory frame records the motion through the tank’s clear acrylic side.

### II. EXPERIMENT

We used a rotating annulus of fluid (Fig. 2) to maintain a constant horizontal velocity of a bath with respect to a vertically impinging jet. The parameters varied were the viscosity $\mu$ of the silicone oils, the jet’s flow rate $Q$, the height of the nozzle $H$ above the bath surface, and the relative velocity $V_{\text{bath}}$ of the bath to the nozzle.

A cylindrical tank with a clear acrylic outer wall was mounted on a rotating table. The annular bath was 29.1 cm in outer diameter, 27.3 cm in inner diameter, and 7.7 cm deep. Silicone oils were used for their stability, low surface tension, high viscosity, and Newtonian properties. They were Dow Corning 200® series and Clearco oils with viscosity $\mu = 52$ to 349 mPa s, density $\rho = 959$ to 968 kg/m$^3$, and surface tension $\sigma = 21.0$ to 21.2 mN/m. Measurements were made at the bath temperature of 23 ± 1° C. We measured the viscosity of each oil for shear rates from 1 to $10^4$ s$^{-1}$ with a Paar Physica MCR300 rheometer, and we found at most a weak dependence on shear rate: oils with viscosities of $\mu = 52, 102, 211, \text{ and } 349$ mPa s at a low shear rate had viscosity values 2, 4, 8, and 12% lower at $10^4$ s$^{-1}$, respectively.

The typical shear rate in the liquid in our experiments is difficult to estimate because the velocity profiles in the air and liquid were not measured. Most of the shear was in the air layer since the dynamic viscosity ratio of air to oil ranged from $4 \times 10^{-4}$ to $5 \times 10^{-5}$. Even ignoring the air layer, the largest velocity difference $1.7$ m/s, see Fig. 5(b)] across the smallest jet diameter (0.05 cm) would produce a maximum shear rate of 3400 s$^{-1}$, at which even the most viscous oil decreased in viscosity by only a few percent. The actual shear rates in the liquid phase should be much smaller; hence the silicone oils used can be considered as Newtonian fluids for the conditions in the experiment.

The table’s rotation rate determined the relative velocity between the bath surface and the nozzle ($V_{\text{bath}} = \Omega R$) ranged from less than 1 cm/s to 35 cm/s with a typical distance from the rotation axis $R = 16$ cm and a rotation rate $\Omega/2\pi = 0$ to 0.4 Hz. When changing the rotation rate, adequate time was given for the bath to establish solid-body rotation. The typical uncertainty in the horizontal bath velocity was 1%.

The flow rate $Q$ was controlled by a gear pump with a pulse dampener and a bypass; $Q$ ranged from 0.075 to 6.28 cm$^3$/s with a typical uncertainty of 2%. Excess liquid drained over an interior wall into a central reservoir from which liquid was pumped; thus the bath’s surface height was constant at the inner cylinder, barring interfacial pinning. The rotation rate changed the bath level at the jet’s position by at most 0.1 cm.

The pump withdrew oil from the central basin and released it above the surface through a vertical Teflon nozzle (stationary in the laboratory frame). The nozzle had an inner diameter $d_{\text{nozzle}} = 0.52$ cm and produced a vertical liquid stream at a height $H$ above the liquid surface; $H$ ranged from 0.7 cm to 15 cm, as determined (within 3%) using a cathetometer. The velocity of the jet $V_{\text{jet}}$, measured at the point of first impact with the surface, was mostly due to falling from height $H$ and only changed slowly with $Q$ (i.e. $4Q/\pi d_{\text{nozzle}}^2 << \sqrt{2gH}$). With typical values $V_{\text{jet}} = 60$ cm/s and the jet diameter $d_{\text{jet}} = 0.1$ cm, the Reynolds number of the jet was 6, the Bond number was 0.5, the capillary number was 3, and the Weber number was 18. Dust and bubbles sitting on the surface could destabilize a bouncing jet, so they were removed by dragging a mesh over the surface of the bath opposite to the falling jet (not shown in Fig. 2).

The bouncing was initiated by passing a small (0.6 cm diameter) horizontal rod quickly through the falling jet, changing its radius, velocity, and shape of the jet in a complicated, time-dependent manner. When the non-uniformity collided with the bath surface, a non-bouncing jet often started to bounce.

Two other methods were found to initiate the bouncing, but were not used in mapping the regime diagrams in Section III B. One method was to rapidly decrease the flow rate from a high rate that entrained air. As the flow rate decreased, the submerged jet penetrated less deeply and then began to bounce. The other method was to change the bath velocity. This last method is discussed more in Section III C.

Images were acquired in the lab frame through the outer wall of the tank with a digital camera. If an ambiguity existed in the geometry of the jet and bath, images were taken at several angles. The images were used to
measure the diameter of the jet, and the velocity was computed by using the flow rate and continuity. The typical uncertainty of the vertical velocity measurement was 8%.

III. RESULTS

A. Dependence on bath velocity and flow rate

Two important parameters that change the qualitative behavior of the jet are the bath velocity and the flow rate. At low bath velocity, the jet bounced with a nearly vertical rebound, as in Fig. 3(a). At smaller bath velocity, the jet bounced only intermittently because the bouncing liquid would collide with the falling jet or would distort the surface and destabilize the bouncing. To get a stable bounce the bath velocity had to be fast enough to carry away the rebounding fluid so it would not disturb the impinging jet. The bouncing could stop in another way: the height of the jet’s bounce would quickly decrease until the jet merged with the bath.

As the bath velocity increased, the rebound became more oblique, as in Fig. 3(b). As a function of the bath’s horizontal velocity, the jet gained more horizontal momentum from the bath and the angle of the jet’s rebound changed continuously.

During bouncing, the jet and the bath were separated by a lubricating layer of air, as revealed by a laser beam propagating down the falling jet. The beam was internally reflected within the jet while the jet bounced, and entered the bath only when the jet and bath merged afterward. We did not measure the thickness of the air layer, but for a plunging jet the air layer surrounding a jet has been measured by Lorenceau et al. [2] to be several micrometers thick. For a rebounding water drop, the minimum thickness of the air film was calculated by Jayaratne and Mason [23] to be about 0.1 µm. For a pendant drop suspended above a moving solid surface, the thickness of the film was measured by Vetrano and Dell’Aversana to be a few micrometers on average, and the shape of the film did not change significantly if the ambient pressure of the surrounding air was at least 300 to 400 mbar [17].

The velocity of the bath necessary for a stable bounce was small compared to the jet velocity. Defining the jet incidence angle as \( \theta = \tan^{-1}(V_{\text{jet}}/V_{\text{bath}}) \), we found that \( \theta \) only ranged from 83 to 90°, while the angle of rebound (in the bath’s frame) ranged from 20 to 80° (for \( \mu = 349 \) mPa s, \( Q \) from 0.16 to 0.52 cm³/s, \( H = 4.2 \) cm, and \( V_{\text{bath}} \) from 0.7 to 7.9 cm/s). For these conditions, 13 to 29% of the jet’s speed was lost while bouncing. Typically, the jet rebounded with higher speed with increasing \( V_{\text{bath}} \) until the jet rebounded low enough for its increasing contact with the bath to slow the jet substantially. This trend
cm$^3$/s, the jet would no longer bounce above a particular bath velocity. Instead, the jet would trail along the surface; the length of liquid floating on the surface quickly shortened until the jet merged with the bath. On the other hand, for $\mu = 211$ mPa s and $Q$ between 0.55 and 0.94 cm$^3$/s, the jet would lift off the surface less and less as $V_{bath}$ increased, until a jet of constant length floated on the surface.

The bouncing jet’s behavior also depends on flow rate, as Fig. 4 illustrates. The higher the flow rate, the more vertical momentum the jet has to deform the bath’s surface. This leads to a deeper, ellipsoidal indentation and more viscous drag on the jet by the bath. The decrease in jet velocity can be seen by the thickening of the jet and the smaller bounce height. The bouncing jet in Fig. 4(b) is slightly irregular. Irregularities in the pumping, nozzle position, and surrounding air can cause the bouncing jet to be temporarily unsteady. The unsteady motion usually decays back to the steady bounding jet, but was sometimes observed to be sustained and periodic.

During rebound, the jet is below the bath’s surface level for some distance; the jet’s weight and the changing momentum of the jet are balanced by surface tension and buoyancy [see the inset of the schematic in Fig. 3(b)]. However, for most jets, the buoyancy of the indentation is small because the sides of the surface indentation are close together and little volume is displaced [see the inset of Fig. 4(b)]. Also the jet’s weight can be neglected, because of the large change in jet’s momentum. In this case the force changing the jet’s momentum is provided mainly by surface tension. The surface pulls nearly vertically on the length $\ell$ of the jet that is under the bath’s surface, producing a force $F_S \approx 2\sigma \ell$. Assuming that the jet velocity is the same before and after rebound, the rate of change of the jet’s vertical momentum is $F_I = \frac{\Delta p_y}{\Delta t_c} \approx \rho \pi (d_{jet}/2)^2 V_{jet}^2 (1 + \sin \phi)$, where $\Delta p_y$ is the change in the jet’s momentum in the vertical direction, $\Delta t_c$ is the duration of the collision, and $\phi$ is the angle of rebound measured from the horizon. In Fig. 4(b), the length $\ell = 1.3 \pm 0.1$ cm and the angle $\phi = 70 \pm 2^\circ$. Therefore, for this simplified force calculation, the surface force $F_S = 54 \pm 4$ dynes and the force of the jet changing direction $F_I = 52 \pm 6$ dynes, where only the measurement uncertainties are included here. The systematic errors from the approximations made in this argument are not included. With the approximations, the forces might be expected to agree within a factor of 2. The forces are the equal within the measurement uncertainty, perhaps coincidentally.

**B. Regime diagrams**

Sweeps of the parameters $\mu, Q, H, V_{bath}$ were conducted with either $H$ held constant [Fig. 5(a)] or $\mu$ and $Q$ held constant [Fig. 5(b)]. Each point was measured at least three times. Bouncing was initiated by passing a plastic rod through the falling liquid stream. A bounc-
ing stream was considered “initiated” after 5 s; most jets that were stable for 5 s would persist for much longer times. The initiation procedure yielded transition parameter values that were reproducible and consistent for different experimenters. The choice of 5 s persistence for identifying a stable bounce is arbitrary; a criterion of 1 s duration would yield parameter space regions for bouncing somewhat larger than those in Fig. 5.

Figure 5(a) displays the range of \( V_{\text{bath}} \) for which a bounce could be initiated as a function of \( Q \) (for a fixed nozzle height, \( H = 3.0 \) cm). For each oil viscosity value, there is a transition between no bouncing and bouncing, marked by solid points in Fig. 5(a). The open points mark the greatest bath velocity where bouncing could be initiated. Above the open points, the jet often trailed on the surface either temporarily or steadily.

The regime where bouncing could be initiated did not close at low \( Q \) for the viscosities of \( \mu = 52 \) and 102 mPa s; the jet broke into droplets before reaching the surface. To prevent dripping, care was taken that the oil did not wet the Teflon nozzle beyond the rim of the its opening; however, dripping could not be prevented for low \( Q \). For \( \mu = 349 \) mPa s at high \( Q \), the bouncing regime did not close because the jet no longer lifted off the surface for higher flow rates. At viscosities higher than 349 mPa s, the transitions from non-bouncing to bouncing became difficult to reproduce because of sensitivity to mechanical vibration. At some conditions, mechanical noise kept the jet bouncing, while at other conditions, the same amount of noise destabilized the bouncing jet.

Jets can bounce twice, as in Fig. 1, but this occurs in a smaller parameter space region than the jet undergoing a single bounce (Fig. 5); the region of double bouncing was not mapped.

The region of stable bouncing when \( H \) rather than \( Q \) was varied is shown in Fig. 5(b). Roughly, for higher \( H \) (and hence higher \( V_{\text{jet}} \)), a higher horizontal bath velocity is needed for stable bouncing.

The range in which stable bouncing occurs is hysteretic in two senses. First, the region in which the jet bounces is larger if the experimental parameters are changed after a bounce has been initiated. For example, if the bath’s velocity was decreased slowly while a jet was bouncing, the bath velocity at which the jet stopped bouncing was lower than the bath velocity at which the bouncing jet could be initiated. The second sense of hysteresis is that a jet impinging on a moving bath has up to four distinct states that occur for the same experimental conditions.

C. Multiple stable states

Three states that are stable for the same conditions are shown in Fig. 6. Each state can be changed to another state by passing a plastic rod through the falling stream.

Figure 6(a) shows a thin cylindrical film of air being entrained into the bath by the impinging jet. (An impinging jet in a stationary bath was studied by Lorenceau et al. [2, 24].) The horizontal motion of the bath drags along the jet and the air film. Air is entrained continuously and collects at the end of the sheath; occasionally a bubble pinches off.

A second state, which we call the “half-entraining jet”, is shown in Fig. 6(b). Only the bottom edge of the jet entrains air; the top edge of the jet is deep in the bath but does not entrain air, as indicated by the inset of the schematic diagram. As the entrained air collects, small
bubbles separate from the bottom edge of the air sheath.

Another confirmation that an air layer separates the jet and the bath is given by increases in the bath velocity, which lengthen the air sheath of the half-entraining jet into a nearly semi-circular arc until the jet rises above the bath level and floats on the surface. Since the rotation rate could be adjusted continuously, this transition could be approached slowly. Once the jet is trailing on the surface, decreasing the bath velocity can lead to the jet lifting from the bath surface; this was mentioned previously as the third method to start a jet bouncing.

The bouncing jet in Fig. 6(c) is the third state for the same conditions. The jet deforms the bath’s surface for a distance $S$. The geometry is difficult to deduce from the photograph because of the refraction, but it is illustrated in the inset of the schematic diagram. As $V_{bath}$ increased, the jet plunged less deeply below the free surface. The maximum depth that the jet penetrated into the bath decreased linearly as the bath’s velocity $V_{bath}$ was increased from 0.7 to 9.43 cm/s, while the horizontal distance that the jet traveled below the bath level increased (observations for $Q = 0.16$ to 0.52 cm$^3$/s; $\mu = 349$ mPa s, $H = 4.2$ cm). As $V_{bath}$ increased, the decrease in the penetration depth was greater than the increase in the horizontal distance, so that the length scale $S$ of the bouncing jet decreased slowly.

In a fourth state, observed for some conditions but not those in Fig. 6, the jet merged with the bath upon contact with the bath, causing only a small depression of the bath surface around the circumference of the jet. The conditions for merging smoothly and for entraining air were discussed in [1].

IV. ENERGY OF PLUNGING AND BOUNCING JETS

We suggest that the transition from plunging to bouncing, illustrated in Fig. 6 and marked by the lower curves in Fig. 5(a), corresponds to a competition between the work associated with dragging the plunging jet through the bath and the energy needed to create the additional bath surface when the jet is bouncing. Effects such as buoyancy, inertia, and shear in the air film are important in the initiation and process of bouncing but are assumed to be unimportant for the argument.

As the jet plunges into the bath, it slows down, widens, and is carried along by the bath; the trumpet-shaped air film can be seen in Fig. 6(a). We model the plunging jet simply as a straight vertical cylinder of length $L$ with a diameter $d_{jet}$ moving through a fluid at velocity $V_{bath}$ perpendicular to the cylinder’s axis; this very rough model is used just to obtain some indication of parameter dependencies. The Stokes drag force $F_{drag}$ exerted on the cylinder is

$$F_{drag} = \frac{4\pi\mu V_{bath} L}{\ln(7.4/Re_{bath})},$$

where $Re_{bath} = d_{jet} \rho V_{bath} / \mu$ [25]. The associated work is

$$E_{plunging} = \int F_{drag} dx \propto F_{drag} \ell$$

where $\ell$ is the length of integration. The length $\ell$ is taken as the horizontal distance that the bath advects a parcel.
of the jet during the time $\Delta t$ that it traverses the cylinder of length $L$ traveling with velocity $V_{jet}$,

$$\ell = V_{bath}\Delta t = V_{bath}\frac{L}{V_{jet}}. \quad (3)$$

The length of the cylinder $L$ is expected to increase with $Q$ and $V_{jet}$, and decrease with $\mu$ and $V_{bath}$. In accord with the expected functional dependence of the cylinder length, we take as an ansatz

$$L \sim a \sqrt{\frac{Q}{V_{bath}}} \quad (4)$$

where $a = 20$ (dimensionless) makes $L$ comparable to estimates of the effective jet length, which is longer than the air sheath (typically 0.5-2 cm) since the jet penetrates farther than the air sheath. With this factor $a$ the energies $E_{\text{plunging}}$ and $E_{\text{bouncing}}$ are comparable, but given the neglected coefficients and many rough approximations of our model, the energy magnitudes are very uncertain.

Substituting $\ell$ and $L$ into the expression for the energy of plunging yields

$$E_{\text{plunging}} \sim \frac{4\pi \mu V_{bath}a^2Q}{V_{jet}ln(7.4/R_{bath})}. \quad (5)$$

Because most of the jet’s velocity is due to gravity and the data are taken at the same height $H$, we assume $V_{jet}$ is constant.

Now consider the energy associated with the additional surface needed to separate the rebounding jet from the bath. The energy of the new interfacial surface scales as an area

$$E_{\text{bouncing}} = \int \sigma dA \sim \sigma S^2, \quad (6)$$

where $S$ is the arc-length of the roughly ellipsoidal indentation on the bath. The surface area present before bouncing only change the coefficient, not the scaling. Additionally, the length scale $S$ scales linearly with $Q$ with a slope $b = 3.13 \text{s/cm}^2$, as shown in the inset in Fig. 7.

In our model, the energy of the drag and of the new surface are balanced at the transition between plunging and bouncing,

$$E_{\text{plunging}} = E_{\text{bouncing}}. \quad (7)$$

Using the relations $S = bQ$, we have

$$\frac{4\pi \mu V_{bath}a^2Q}{V_{jet}ln(7.4/R_{bath})} \sim \sigma b^2 Q^2. \quad (8)$$

The Reynolds number of the bath, which ranged from $10^{-2}$ to 6, was calculated using $d_{jet} = \sqrt{Q}/\sqrt{4/(\pi V_{jet})}$. Our measurements of the transition curves at four different viscosity values collapse well when expressed as in (??), as Fig. 7 illustrates. The data indicate that as $Q$ increases, $E_{\text{plunging}}$ grows faster than $E_{\text{bouncing}}$. However, a power law fit yields an exponent of $1.6 \pm 0.1$, where the uncertainty is the deviation of power law fits of the individual transition curves where they have positive slope.

V. KITCHEN EXPERIMENTS

The bouncing jet phenomenon can be observed in many household fluids such as canola oil or heavy mineral oil. Bouncing was first observed in our laboratory while pouring silicone oil by hand into a dish for storage. The materials needed for observing a bouncing jet are simple: a dish (preferably transparent like a glass pie pan, at least 15 cm in diameter and 4 cm tall), a cup, and a small rod (e.g. a cable tie or a chopstick). We measured the viscosity of canola oil and heavy mineral oil (at 22° C) at high shear rates and found both oils to be Newtonian to a good approximation: for canola oil, $\mu = 65 \text{ mPa s}$ at low shear and 4% lower at a shear of $10^4 \text{ s}^{-1}$; for heavy mineral oil, $\mu = 180 \text{ mPa s}$ at low shear and 18% lower at a shear rate of $10^4 \text{ s}^{-1}$.

To observe a bouncing jet, use a dish with liquid about 4 cm deep and pour a thin stream of the liquid (0.5 to 1 cm$^3$/s) from a cup 3 to 6 cm above the surface. While pouring, move the stream in a circular motion around the dish once about every 2 seconds at a distance 3 to 6 cm from the center. Watch for the jet to bounce while varying the pouring rate, the relative horizontal distance between the jet and the bath, and the pouring height. To encourage bouncing, pass the small rod through the jet intermittently. A rotating platform (e.g. a record...
falling heights, jet velocities, and jet diameters. However, similar to the Kaye effect: both are thin streams of liquid bouncing from a surface, and both occur for similar falling heights, jet velocities, and jet diameters. However, while we have studied bouncing for Newtonian liquids. The Newtonian bouncing liquid jet is separated from the bath by an air layer, likely 0.1 to 10 µm thick (see discussion in Section III A) [2, 17, 23]. In contrast, the stable Kaye effect is lubricated by a shear-thinned layer of liquid about 100 µm thick [21]. The bouncing jet also occurs for less viscous liquids than the Kaye effect.

The behavior of a bouncing jet is determined by an interplay of viscous, inertial, surface, and gravitational forces. This causes the relationship between any two features of the bouncing jet to be very complicated. We have suggested that the onset of bouncing can be approached by comparing the energies of drag on the plunging jet and the energy of the new surface of the bouncing jet. While the argument collapses the transition curves, it cannot explain the slope of the curves or their closure at small Q. To understand this transition better, future experiments should examine the dependence on other parameters, including surface tension, density difference, radius of the nozzle, angle of incidence of the jet, and the viscosity and pressure of the surrounding fluid (which was air at atmospheric pressure in our experiments). Many of these conditions have already been studied for the case of droplet non-coalescence [5]. In addition, we have observed that a falling jet impinging on a moving bath exhibits other phenomena that warrant future study [26].

VI. DISCUSSION

We have observed a falling jet of a Newtonian liquid bouncing from a moving bath of the same liquid for a wide range of viscosity (52 to 349 mPa s), jet diameter (0.05 to 0.12 cm), jet velocity at impact (38 to 170 cm/s), and the bath’s horizontal velocity (0.5 to 35 cm/s). By initiating the jet in different ways, as many as four stable states were observed for the same experimental conditions.

The bouncing jet is a new example of steady non-coalescence and a new example of a fluid flow with multiple stable states. Bouncing jets could be used as a new technique for controlling a fluid jet and preventing or promoting the entrainment of the fluid surrounding the jet. The phenomenon can be observed easily with a variety of fluids at home.

The bouncing phenomenon we have studied is similar to the Kaye effect: both are thin streams of liquid rebounding from a surface, and both occur for similar falling heights, jet velocities, and jet diameters. However, the liquid of the stable Kaye effect is non-Newtonian, while the bouncing jet is Newtonian. The bouncing jet is lubricated by a shear-thinned layer of liquid about 100 µm thick (see discussion in Section III A) [2, 17, 23]. In contrast, the stable Kaye effect is lubricated by a shear-thinned layer of liquid about 100 µm thick [21]. The bouncing jet also occurs for less viscous liquids than the Kaye effect.

We thank W.D. McCormick and J.W.M. Bush for helpful discussions. We also thank Olivier Praud and Abe Yarbrough for help with preliminary experiments. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

Acknowledgments