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An invariant distribution in static granular media
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Abstract – We have discovered an invariant distribution for local packing configurations in static
granular media. This distribution holds in experiments for packing fractions covering most of
the range from random loose packed to random close packed, for bead packs prepared both in
air and in water. Assuming only that there exist elementary cells in which the system volume
is subdivided, we derive from statistical mechanics a distribution that is in accord with the
observations. This universal distribution function for granular media is analogous to the Maxwell-
Boltzmann distribution for molecular gasses.
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Granular materials are complex systems characterized
by unusual static and dynamic properties. These systems
are comprised of large numbers of dissipative macroscopic
particles assembled into disordered structures. There is
a very large number of microscopic configurations corre-
sponding to the same macroscopic properties. Edwards
and coauthors [1,2] have proposed that the complexity of
static granular systems could be disentangled by means
of a statistical-mechanics approach reducing the descrip-
tion of the system state to a few parameters only [3–17].
An essential part of Edwards’ idea is that in static gran-
ular media volume plays the role held by energy in usual
thermodynamics. Therefore, an understanding of the
volume distribution function is the key to connect micro
scopic details of the system with macroscopic state
variables.
Since granular materials are dissipative, they can change

their static configurations only when energy is injected
into the system. For instance, landmark experiments by
the Chicago group [18–20] obtained different average
packing fractions by tapping the container with different
intensities and different numbers of times. Similarly, an
experiment by Schröter et al. [21] obtained reproducible
average packing fractions by driving the system with peri-
odic trains of flow pulses in a fluidized bed. A general
idea underlying a statistical-mechanics description is that
the properties of the system do not depend on how the

energy is injected but depend only on the portion of
the configurational space that the system explores under
such disturbances. This is not self-evident; e.g., [22]
showed that aging and irreversible behavior occur in
tapped granular samples that have not reached a station-
ary state. The present paper demonstrates, using the
largest sets of experimental data on particle positions
presently available, that a statistical mechanics framework
can predict local volume distributions. The system volume
(VT ) is shown to be the relevant state variable, while
the preparation history has no discernible influence on
the questions studied here.

Experiments. – We analyze the structural properties
of static granular packings produced in 18 different experi-
ments, 6 with acrylic spheres in air and 12 with glass beads
in water. The packing fractions (ρ) range from 0.56 to
0.64. Three-dimensional density maps have been obtained
for these systems using X-ray computed tomography [23].
Coordinates of the bead centers have been calculated for
more than two million spheres with a precision better than
1% of their diameters, which is better than the uncertainty
arising from polydispersity (5% for the glass particles and
2% for the acrylic particles).
The 12 samples of glass beads were prepared using

the fluidized bed technique described in [21]; each
sample consisted of about 145000 spherical grains with
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diameter 250± 13µm placed in a cylindrical glass
container with inner diameter 12.7mm. The beads were
fluidized with pulses of deionized water produced by a
computer-controlled syringe pump. During each flow pulse
the bed expanded until its height reached a stable value.
After each flow pulse the bed was allowed to settle into
a mechanically stable configuration. Packing fractions
in the range between 0.56 and 0.60 were obtained using
pulses with different flow rates. The particle configura-
tions have been studied for sub-sets of grains that were
at a distance larger than four sphere diameters from the
sample boundaries; these internal regions contained about
90000 grains per sample.
The 6 samples with acrylic spheres were described

in [24]. Two of these samples each contained about 140000
particles (90000 in the internal volume) with diameter
1.59± 0.02mm in a cylindrical container with an inner
diameter of 55mm, filled to a height of 75mm. The
other four samples each contained about 35000 acrylic
spheres (15000 spheres in the internal volume) with
diameter 1.00± 0.02mm in the same cylindrical container.
In these samples (labeled with symbols A-F) different
packing fractions were achieved by different preparation
methods: (A, ρ= 0.586) and (B, ρ= 0.596) were obtained
by placing a stick in the middle of the container before
pouring the beads into it and then slowly removing the
stick; (C, ρ= 0.619) was obtained by gently and slowly
pouring the spheres into the container; (D, ρ= 0.626)
was achieved by a faster pouring; (E, ρ= 0.630) was
realized by gently tapping the container walls; (F, ρ=
0.640) was reached by a combined action of gentle tapping
and compression from above (leaving the upper surface
unconfined at the end of the preparation).
The 12 samples of glass beads in water are examined

for the first time in this paper, while the 6 samples
of previously investigated acrylic beads [23–26] serve as
reference data. The different types of beads, prepared
by different methods, help differentiate between general
properties of granular media and those properties specific
to a given material or preparation procedure.

Theory. – Several statistical mechanics approaches
have been proposed to describe granular materials [1,2,
4–6,9,11,14,27]. We make here the minimal number of
assumptions in considering a granular system at rest that
occupies a given volume VT . We consider that the system
is subdivided into C elementary cells which can have any
volume vi (i= 1 . . . C) larger than or equal to a minimum

volume vmin, under the condition
∑C
i=1 vi = VT . Under

the sole assumption that any assembly of such elementary
volumes will produce proper mechanically stable packings,
we can obtain the probability distribution for the cell-
elementary volume (p(v)) by computing the ratio between
the number of configurations containing a cell of volume
v (Z(v) = (VT −Cvmin− v+ vmin)C−1/(C − 1)!) and the
total number of configurations Z = (VT −Cvmin)C/C!).
This yields p(v) =Z(V )/Z = C

VT−Cvmin (1− v−vmin
VT−Cvmin ),

which in the limit C→∞ and VT /C finite, becomes

p(v) =
1

χ
e−(v−vmin)/χ, (1)

with
χ= 〈v〉− vmin, (2)

where 〈v〉= VT /C is the average volume per elementary
cell and χ is an intensive thermodynamic parameter
accounting for the exchange of volume between the
elementary cell and the surrounding volume “reservoir”.
There is no need to specify the nature and kind of such
“elementary cells”; the only assumptions are that they
exist, that they can have any volume larger than vmin,
and that their assembly fills a volume VT . Space can be
divided arbitrarily into pieces. Common examples of such
partitions into space-filling blocks are the Delaunay and
the Voronöı decompositions [26,28,29]. Such cells do not
coincide with the elementary ones, but they might be
assemblies of such elementary cells. For instance, in a
Delaunay partition of a three-dimensional packing there
are about six times more cells than in the Voronöı decom-
position. The present theory applies to any degree of space
partition made by any agglomerate local structure made of
a given number k of elementary cells, since the probability
distribution function for each elementary cell follows an
exponential distribution (eq. (1)). The aggregate proba-

bility distribution function f(V, k) of a sum (V =
∑k
i=1 vi)

of k volumes must be a Gamma distribution [30],

f(V, k) =
kk

(k− 1)!
(V −Vmin)(k−1)
(〈V 〉−Vmin)k exp

(
−k V −Vmin〈V 〉−Vmin

)
,

(3)

with 〈V 〉= kVT /C and Vmin = kvmin being, respectively,
the average and the minimum volumes for a given
packing. It follows from eqs. (1) and (3) that

χ=
〈V 〉−Vmin

k
, (4)

which is the average free-volume per elementary cell.
Therefore, the intensive variable χ is a measure of the
kind and the degree of space-partition into elementary
cells. The distribution f(V, k) is a Gamma distribution
in the variable V −Vmin; it is characterized by a “shape”
parameter k and a “scale” parameter χ [30]. Gamma
distributions have been observed in two-dimensional
Voronöı networks [31], and empirical fits with a Gamma
distribution were proposed for Voronöı partitions from
random Poisson points in three dimensions [32].
We have obtained f(V, k) assuming that the cells are

uniquely characterized by their volumes, and that any
combination of C cells with arbitrary volumes vi � vmin
will produce a structurally stable, space-filling system of
cells. This is possible in one dimension only where the
packing is an arbitrary arrangement of grain centers at
distances larger or equal than vmin. In this case the
elementary cells are the Delaunay cells [29], which are
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the segments in between two successive grain centers;
the distribution of their sizes is exactly described by p(v).
In three dimensions, the Delaunay cells are tetrahedra
with vertices on the centers of neighborhood grains chosen
in a way that no other grains in the packing have centers
within the circumsphere of each Delaunay tetrahedron.
Clearly, in this case the Delaunay cells are not uniquely
described by their volumes, and an arbitrary collection of
cells is neither space-filling nor mechanically stable.

Results. – The distributions of the Delaunay volumes
obtained from the 18 sets of data for different kinds of
beads in different media and different conditions are all
described well by the same function, as shown fig. 1(a).
The collapse of the data onto a single curve was obtained
using Vmin =

√
2/12d3 (with d the sphere diameter),

which is the volume of a regular Delaunay tetrahedron
for four spheres in contact (the smallest compact tetra-
hedron [26]). In a recent paper, Aste [26] showed that the
tails of the distribution of the Delaunay volumes in the 6
experiments with dry acrylic beads (A-F) were exponen-
tial with coefficients associated with the packing fraction;
this is confirmed by the present investigation, which
shows that the same kind of exponential decay applies
both to dry acrylic bead packs prepared with different
methodologies (A-F) and to glass beads in water prepared
with fluid pulses. All the data fit well to the inverse

cumulate distribution, F (V ) = 1− ∫ V
vmin
f(v′, 1)dv′, as

fig. 1(b) shows; the agreement extends over four orders of
magnitude and uses no adjustable parameters. The
observation of the same behavior for all 18 samples
demonstrates that such a result is robust and likely to be
universal for a broad class of granular systems. Further,
fig. 1(a) shows that the Delaunay volume distributions for
all the samples collapse on the same master curve when
plotted vs. (V −Vmin)/(〈V 〉−Vmin). This new finding
reinforces the underlying idea that volume fluctuations in
granular packs are described by a universal probability
distribution with parameters depending only on the
packing fraction. The agreement between the experiments
and the predictions in eq. (3) for k= 1 suggests that
Delaunay cells might be considered candidates for the
“elementary cells”; however, it was noted in [26] that, at
small V −Vmin, in the region where the spheres make
contact (V <

√
3d3/12), the empirical distributions devi-

ate from the simple exponential form predicted by p(v),
which indicates that other constraints such as mechanical
equilibrium should be also taken into account to correctly
describe such a region.
An alternative way for dividing space into space-filling

cells is the Voronöı partition. Let us first consider the
one-dimensional case where the present theory is exact.
In one dimension, the Voronöı cell around grain ‘i’ is
constructed by taking the segment between the two
mid-points between grains i− 1 and i, and between
grains i and i+1. The size of such a segment is equal
to (vi+ vi+1)/2 where vi and vi+1 are the distances
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Fig. 1: (a) Distributions of the Delaunay cell volumes from
18 experiments collapse onto a universal curve when plotted
vs. (V −Vmin)/(〈V 〉−Vmin). The inset shows that the same
distributions plotted vs. V/d3 do not collapse. (b) The inverse

cumulate distributions, F (V ) = 1− ∫ V
Vmin

f(V )dV , also show
evidence of a collapse onto a universal curve when plotted
vs. (V −Vmin)/(〈V 〉−Vmin). The line is the inverse cumu-
late distribution for f(V, k= 1) (eq. (3)). The inset shows
the cumulate distributions plotted vs. V/d3. The distributions
are obtained from a statistical analysis of more than six
million cells in 18 different experiments with three differ-
ent kinds of beads in air and in water. The open symbols
correspond to the 6 experiments with dry acrylic beads [24]:
(A) circles; (B) squares; (C) stars; (D) diamonds; (E) triangles;
(F) triangles down. The “+” corresponds to the 12 experiments
with packing fractions 0.56� ρ� 0.60 made with glass spheres
in fluidized bed.

between the two consecutive couples of points. Therefore,
the probability of finding a one-dimensional Voronöı cell
of size V is associated with the probability of finding
two successive Delaunay cells with sizes v1+ v2 = 2V .

This probability is 2
∫ 2V−vmin
vmin

p(v1)p(2V − v1)dv1 ∝
(V − vmin) exp[(−2V +2vmin)/(〈V 〉− vmin)]∝ f(V, k= 2),
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Fig. 2: Top: distributions of the Voronöı cell volumes plotted
vs. V/d3. The data refer to the 18 experiments, and the symbols
are the same as in fig. 1. Bottom: all the distributions collapse
onto a universal curve when plotted vs. (V −Vmin)/(〈V 〉−
Vmin). The theoretical line is f(V, k= 12) (eq. (3)).

with 〈V 〉 the average size of the Voronöı cell. In three
dimensions, the Voronöı cell can be also seen as the
combination of several elementary cells with distribution
f(V, k); however, in this case the number of sub-cells
involved is not fixed at k= 2 but depends on the kind of
packing.
In [26] it was noted that the Voronöı volume

distributions for the 6 samples A-F do not exhibit
an exponential decay. Indeed, in this paper we have
demonstrated that such distribution must follow eq. (3),
which is not a simple exponential. In fig. 2 it is shown
that data for over a million of Voronöı cells from all 18
experiments for dry and wet packings of glass and acrylic
spheres collapse to the the same distribution function.
In this collapse of the data there are no adjustable
parameters, just 〈V 〉= VT /(number of grains) and

Vmin = 5
(5/4)/

√
2(29+13

√
5)d3 � 0.694d3, which is the

smallest Voronöı cell that can be built in a equal-spheres
packing [29]. Figure 2 shows that such a universal
distribution function is well described by eq. (3) with
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Fig. 3: The standard deviations of the Voronöı volume distri-
butions in the 18 experiments fit the linear relation given by
eq. (6) with k= 12. The dot-dashed line above and below the
solid line corresponds to k= 11 and k= 13, respectively.

k= 12, which indicates that about 12 elementary cells
contribute in building each Voronöı cell. Such a number
is meaningful, since about 12 spheres are expected to be
found in the close neighborhood of any given sphere in the
packing. We find also that the distribution in eq. (3)
with k= 12 holds for the Voronöı volumes from the simu-
lations of granular packings reported in [27]. An equivalent
collapse of the distributions can be obtained by plotting
the volume distributions vs. (v−〈v〉)/σ=√k((v− vmin)/
(〈v〉− vmin)− 1), as proposed by Starr et al. [33] for
simulations of a polymer melt, water, and silica, but in
this case the parameter k and the minimum volume vmin
must be changed.
A further demonstration that such statistical distribu-

tions are independent of the details of a sample and the
method of sample preparation is provided by the behav-
ior of the volume fluctuations, which can be calculated
directly from the relation (see eq. (3)),

σ2(V ) =
〈
(V −〈V 〉)2〉= χ2 ∂ 〈V 〉

∂χ
, (5)

which becomes, using ∂ 〈V 〉 /∂χ= k (from eq. (4)),

σ(V ) = χ
√
k=
〈V 〉−Vmin√

k
. (6)

The good correspondence of the data from the Voronöı
volume distributions with eq. (6) (fig. 3) provides
further evidence that 〈V 〉 and k are the relevant control
parameters.

Conclusions. – We have shown that the local volume
distributions of granular packings of monodisperse
spherical grains are described by a universal distribution
function (eq. (3)). This distribution function was derived
using a statistical-mechanics approach and the assump-
tion that the volumes are composed of a set of elementary
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cells. Granular samples have been prepared by water
fluidization pulses, tapping, and pouring. Fluidization
pulses have been shown to produce stationary, history-
independent states for the range of volume fractions
studied here [21], and tapping fulfills those criteria only
in a range different than that of our samples [22]. (For
pouring the independence of preparation history has
not been established.) Therefore, the agreement between
theory and experiment that we have found indicates that
the local volume distribution is not sensitive to different
ways of sampling the granular phase space. This suggests
some generic ergodicity, which gives hope for a statistical
mechanics of static granular media.
In the present theory the only tunable parameter is k,

which has been found to be k∼ 12 for Voronöı decom-
positions throughout the accessible density ranges of the
different static granular packings studied. Interestingly, for
granular gasses the same empirical distribution (eq. (3))
applies but with k= 5.586 [32,34]. A similar kind of distri-
bution (Gamma distribution) with different values of the
parameter k has also been observed in a two-dimensional
Voronöı tessellation generated from disk packings [35].
Therefore, the parameter k could be the ‘structure para-
meter’ which depends on the system phase. From fig. 3
one can see that the deduced k values (eq. (6)) lie in a
narrow range between k� 11 and k� 13. Further investi-
gations are needed to understand if such a range of values
is associated with statistical uncertainty or is associated
with changes occurring in the system structure. Since the
intensive quantity χ is inversely proportional to k (eq. (4)),
the parameter k (together with the packing fraction) is a
control parameter for these systems. Within the frame-
work of a statistical mechanics description, eq. (3) can
be regarded as analogous to the Maxwell-Boltzmann
distribution for granular media.
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