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A periodically kicked ring of a Bose-Einstein condensate is considered as a nonlinear generalization of the
quantum kicked rotor, where the nonlinearity stems from the mean-field interactions between the condensed
atoms. For weak interactions, periodic motion �antiresonance� becomes quasiperiodic �quantum beating� but
remains stable. There exists a critical strength of interactions beyond which quasiperiodic motion becomes
chaotic, resulting in an instability of the condensate manifested by exponential growth in the number of
noncondensed atoms. In the stable regime, the system remains predominantly in the two lowest energy states
and may be mapped onto a spin model, from which we obtain an analytic expression for the beat frequency and
discuss the route to instability. We numerically explore a parameter regime for the occurrence of instability and
reveal the characteristic density profile for both condensed and noncondensed atoms. The Arnold diffusion to
higher energy levels is found to be responsible for the transition to instability. Similar behavior is observed for
dynamically localized states �essentially quasiperiodic motions�, where stability remains for weak interactions
but is destroyed by strong interactions.
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I. INTRODUCTION

The �-kicked rotor is a textbook paradigm for the study of
classical and quantum chaos �1�. In the classical regime, in-
creasing kick strengths destroy regular periodic or quasiperi-
odic motions of the rotor and lead to the transition to chaotic
motions, characterized by diffusive growth in the kinetic en-
ergy. In quantum mechanics, chaos is no longer possible be-
cause of the linearity of the Schrödinger equation and the
motion becomes periodic �anti-resonance�, quasiperiodic
�dynamical localization�, or resonant �quantum resonance�
�2,3�. Experimental study of these quantum phenomena have
been done with ultracold atoms in periodically pulsed optical
lattices �4�. However, most of the previous investigations
have been focused on single-particle systems and the effects
of interaction between particles have not received much at-
tention �5,6�.

In recent years, the realization of Bose-Einstein conden-
sation �BEC� �7� of dilute gases has opened interesting op-
portunities for studying dynamical systems in the presence of
many-body interactions. One cannot only prepare initial
states with unprecedented precision and pureness, but one
also has the freedom of introducing interactions between the
particles in a controlled manner. A natural question to ask is
how the physics of the quantum kicked rotor is modified by
the interactions. In the mean-field approximation, many-
body interactions in BEC are represented by adding a non-
linear term in the Schrödinger equation �8� �such a nonlinear
Schrödinger equation also appears in the context of nonlinear
optics �9��. This nonlinearity makes it possible to bring chaos
back into the system, leading to instability �in the sense of
exponential sensitivity to initial conditions� of the conden-

sate wave function �10�. The onset of instability of the con-
densate can cause rapid proliferation of thermal particles �11�
that can be observed in experiments �12�. It is therefore im-
portant to understand the route to chaos with increasing in-
teractions. This problem has recently been studied for the
kicked BEC in a harmonic oscillator �6�.

In Ref. �13�, we have investigated the quantum dynamics
of a BEC with repulsive interaction that is confined on a ring
and kicked periodically. This system is a nonlinear generali-
zation of the quantum kicked rotor. From the point of view
of dynamical theory, the kicked rotor is more generic than
the kicked harmonic oscillator, because it is a typical low
dimensional system that obeys the KAM theorem, while the
kicked harmonic oscillator is known to be a special degen-
erate system out of the framework of the KAM theorem �14�.
It is very interesting to understand how both quantum me-
chanics and mean-field interaction affect the dynamics of
such a generic system.

In this paper, we extend the results of Ref. �13�, including
a more detailed analysis of the model considered there as
well as different phenonmena. We will focus our attention on
the relatively simpler case of quantum antiresonance, and
show how the state is driven towards chaos or instability by
the mean-field interaction. The paper is orgnaized as follows:
Section II lays out our physical model and its experimental
realization. Section III is devoted to the case of weak inter-
actions between atoms. We find that weak interactions make
the periodic motion �antiresonance� quasiperiodic in the form
of quantum beating. However, the system remains predomi-
nantly in the lowest two energy levels and analytic expres-
sions for the beating frequencies are obtained by mapping
the system onto a spin model. Through varying the kick pe-
riod, we find that the phenomenon of antiresonance may be
recovered even in the presence of interactions. The decoher-
ence effects due to thermal noise are discussed. Section IV is
devoted to the case of strong interactions. It is found that*These authors contributed equally to this work.
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there exists a critical strength of interactions beyond which
quasiperiodic motion �quantum beating� is destroyed, result-
ing in a transition to instability of the condensate character-
ized by an exponential growth in the number of noncon-
densed atoms. Universal critical behavior for the transition is
found. We show that the occurrence of instability corre-
sponds to the process of Arnold diffusion, through which the
state can penetrate through the KAM tori and escape to high-
energy levels �15�. We study nonlinear effects on dynami-
cally localized states that may be regarded as quasiperiodic
�16�. Similar results are obtained in that localization remians
for sufficiently weak interactions but become unstable be-
yond a critical strength of interactions. Section V consists of
conclusions.

II. PHYSICAL MODEL: KICKED BEC ON A RING

Although the results obtained in this paper are common
properties of systems whose dynamics are governed by the
nonlinear Schrödinger equation, we choose to present them
here for a concrete physical model: a kicked BEC confined
on a ring trap, where the physical meanings of the results are
easy to understand. The description of the dynamics of this
system may be divided into two parts: condensed atoms and
noncondensed atoms.

A. Dynamics of condensed atoms: Gross-Pitaevskii equation

Consider condensed atoms confined in a toroidal trap of
radius R and thickness r, where r�R so that lateral motion is
negligible and the system is essentially one-dimensional
�17�. The dynamics of the BEC is described by the dimen-
sionless nonlinear Gross-Pitaveskii �GP� equation,

i
�

�t
� = �−

1

2

�2

��2 + g���2 + K�cos���t�T��� , �1�

where g=8NaR /r2 is the scaled strength of nonlinear inter-
action, N is the number of atoms, a is the s-wave scattering
length, K is the kick strength, �t�T� represents �n��t−nT�, T
is the kick period, and � denotes the azimuthal angle. The
length and the energy are measured in units R and �2 /mR2,
respectively. The wave function ��� , t� has the normalization
	0

2����2d�=1 and satisfies periodic boundary condition
��� , t�=���+2� , t�.

Experimentally, the ring-shape potential may be realized
using two two-dimensional �2D� circular “optical billiards”
with the lateral dimension being confined by two plane op-
tical billiards �18�, or optical-dipole traps produced by red-
detuned Laguerre-Gaussian laser beams of varying azimuthal
mode index �19�. The � kick may be realized by adding
potential points along the ring with an off-resonant laser �4�,
or by illuminating the BEC with a periodically pulsed
strongly detuned running wave laser in the lateral direction
whose intensity I is engineered to I= I0+ I1x /R �20�. In the
experiment, we have the freedom to replace the periodic
modulation cos��� of the kick potential with cos�j��, where j
is an integer. Such replacement revises the scaled interaction
constant g and kicked strength K, but will not affect the
results obtained in the paper. The interaction strength g may

be adjusted using a magnetic-field-dependent Feshbach reso-
nance or the variation of the number of atoms �21�.

B. Dynamics of noncondensed atoms: Bogoliubov equation

The deviation from the condensate wave function is de-
scribed by Bogoliubov equation that is obtained from a lin-
earization around the GP equation �11�. In Castin and Dum’s
formalism, the mean number of noncondensed atoms at zero

temperature is described by 
�N̂�t��=�k=1
� 
vk�t� �vk�t��, where

vk�t� are governed by

i
d

dt
�uk

vk
� = � H1 H2

− H2
* − H1

* � �uk

vk
� , �2�

where H1= p̂2 /2+g���2−	+gQ���2Q+K�cos ���t�T�, H2

=gQ�2Q*, 	 is the chemical potential of the ground state, �
is the ground state of the GP equation, and the projection
operators Q are given by Q=1− ���
��.

The number of noncondensed atoms describes the devia-
tion from the condensate wave function and its growth rate
characterizes the stability of the condensate. If the motion of
the condensate is stable, the number of noncondensed atoms
grows at most polynomially with time and no fast depletion
of the condensate is expected. In contrast, if the motion of
the condensate is chaotic, the number of noncondensed at-
oms diverges exponentially with time and the condensate
may be destroyed in a short time. Therefore the rate of
growth of the noncondensed atoms number is similar to the
Lyapunov exponent for the divergence of trajectories in
phase space for classical systems �6�.

III. WEAK INTERACTIONS: ANTIRESONANCE AND
QUANTUM BEATING

In this section, we focus our attention on the case of quan-
tum antiresonance, and show how weak interactions between
atoms modify the dynamics of the condensate. Quantum an-
tiresonance is a single-particle phenomenon characterized by
periodic recurrence between two different states, and its dy-
namics may be described by Eq. �1� with parameters g=0
and T=2� �3�.

A. Quantum beating

In a noninteracting gas, the energy of each particle oscil-
lates between two values because of the periodic recurrence
of the quantum states. In the presence of interactions, single-
particle energy loses its meaning and we may evaluate the
mean energy of each particle

E�t� = �
0

2�

d��*�−
1

2

�2

��2 +
1

2
g���2�� . �3�

To determine the evolution of the energy, we numerically
integrate Eq. �1� over a time span of 100 kicks, using a
split-operator method �22�, with the initial wave function �
being the ground state ��� ,0�=1/2�. After each kick, the
energy E�t� is calculated and plotted as shown in Fig. 1.
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In the case of noninteraction �Fig. 1�a�, g=0�, we see that
the energy E�t� oscillates between two values and the oscil-
lation period is 2T, indicating the periodic recurrence be-
tween two states �antiresonance�.

The energy oscillation with weak interaction �g=0.1� in
Fig. 1�b� shows a remarkable difference from that for the
noninteraction case. We see that the amplitude of the oscil-
lation decreases gradually to zero and then revives, similar to
the phenomenon of beating in classical waves. Clearly, it is
the interactions between atoms in BEC that modulate the
energy oscillation and produce the phenomena of quantum
beating. As we know from classical waves, there must be
two frequencies, oscillation and beat, to create a beating.
These two frequencies are clearly seen in Fig. 2 that is ob-
tained through Fourier transform of the energy evolutions in
Fig. 1. For the noninteraction case �Fig. 2�a��, there is only
the oscillation frequency fosc=0.5/T, corresponding to one
oscillation in two kicks. The interactions between atoms de-
velop a new beat frequency fbeat, as well as modify the os-
cillation frequency fosc, as shown in Fig. 2�b�.

In Fig. 3, these two frequencies are plotted with respect to
different interacting constant g and kick strength K. We see
that both beat and oscillation frequencies vary nearly linearly

with respect to the interaction strength g. More interestingly,
the two frequencies satisfy a conservation relation

fosc + fbeat/2 = 1/2. �4�

For a strong interaction �Fig. 1�c��, i.e., g
1.96, we find
that the energy’s evolution demonstrates an irregular pattern,
clearly indicating the collapse of the quasiperiodic motion
and the occurrence of instability. The corresponding Fourier
transformation of the energy evolution �Fig. 2�c�� has no
sharp peak. This transition to instability will be discussed in
Sec. IV in details.

B. Spin model

The phenomena of quantum beating can be understood by
considering a two-mode approximation �23� to the GP equa-
tion. In this approximation, condensed atoms can only effec-
tively populate the two lowest second quantized energy
modes. The validity of this two-mode model is justified by
the following facts which are observed in the numerical
simulation. First, the total energy of the condensate is quite
small so that we can neglect the population at high-energy
modes and keep only the states with quantized momentums 0
and ±1. Second, the total momentum of the condensate is
conserved during the evolution. Therefore the populations of
the states with momentum ±1 are same if the initial momen-
tum of the condensate is zero �the ground state�.

Here we consider a quantum approach of this two-mode
model, which yields an effective spin Hamiltonian in the
mean-field approximation. By considering the conservation
of parity we may write the Boson creation operator for the
condensate as

�̂† =
1

2�
�â† + 2b̂† cos �� , �5�

where â† and b̂† are the creation operators for the ground
state and the first excited states, satisfying the commutation

relation �â , â†�=1, �b̂ , b̂†�=1, and particle number conserva-

tion â†â+ b̂†b̂=N.
Substituting Eq. �5� into the many-body Hamiltonian of

the system

FIG. 1. Plots of average energy E�t� versus the number of kicks
t for three values of g. The kick strength K=0.8.

FIG. 2. Fourier transformation of the energy evolutions in Fig.
1. The unit for the frequency is 1 /T.

FIG. 3. Plots of beat and oscillation frequencies versus the in-
teraction strength �a� and kick strength �b�, where the scatters are
the results from numerical simulation using the GP equation and
lines from analytic expressions Eqs. �15� and �16�.
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Ĥ = �
0

2�

d���̂†�−
1

2

�2

��2��̂ +
g

2N
�̂†�̂†�̂�̂

+ �̂†
„K�cos ���T�t�…�̂� , �6�

we obtain a quantized two-mode Hamiltonian

Ĥ = −
1

2
L̂z +

g

4�N
�4L̂x

2 −
1

2
�N − 1�L̂z +

1

2
L̂z

2� + 2KL̂x�T�t�

�7�

in terms of the Bloch representation by defining the angular
momentum operators,

L̂x =
â†b̂ + âb̂†

2
,

L̂y =
â†b̂ − âb̂†

2i
,

L̂z =
â†â − b̂†b̂

2
, �8�

where we have discarded all c-number terms.
The Heisenberg equations of motion for the three angular

momentum operators reads

dL̂x

dt
=

L̂y

2
+

g�N − 1�
4N

L̂y −
g

8�N
�L̂y,L̂z� ,

dL̂y

dt
= −

L̂x

2
−

g�N − 1�
8�N

L̂x −
7g

8�N
�L̂z,L̂x� − 2KL̂z�T�t� ,

dL̂z

dt
=

g

�N
�L̂y,L̂x� + 2KL̂y�T�t� , �9�

where �L̂i , L̂j�= L̂iL̂j + L̂jL̂i.
The mean-field equations for the first-order expectation

values 
L̂i� of the angular momentum operators are obtained

by approximating second-order expectation values 
L̂iL̂j� as

products of 
L̂i� and 
L̂j�, that is, 
L̂iL̂j�= 
L̂i�
L̂j� �24�. Defin-
ing the single-particle Bloch vector

S� = �Sx,Sy,Sz� =
2

N
�
L̂x�,
L̂y�,
L̂z�� , �10�

we obtain the nonlinear Bloch equations

Ṡx = �1

2
+

g

8�
−

g

8�
Sz�Sy ,

Ṡy = �−
1

2
−

g

8�
−

7g

8�
Sz�Sx − 2KSz�T�t� ,

Ṡz =
g

�
SySx + 2KSy�T�t� , �11�

where we have used N�1. The mean-field Hamiltonian in
the spin representation reads

H = −
Sz

2
+

g

2�
�Sx

2 −
Sz

4
+

Sz
2

8
� + 2KSx�t�T� . �12�

From the definition of the Bloch vector, we see that Sz cor-
responds to the population difference and −arctan�Sy /Sx� cor-
responds to the relative phase � between the two modes.
This Hamiltonian is similar to a kicked top model �25�, but
here the evolution between two kicks is more complicated.

With the spin model, we can readily study the dynamics
of the system. For the noninteraction case �g=0�, The Bloch
equations �11� become

Ṡx =
1

2
Sy ,

Ṡy = −
1

2
Sx − 2KSz�T�t� ,

Ṡz = 2KSy�T�t� . �13�

We see that the evolution between two consecutive kicks is
simply an angle � rotation about the z axis, which yields the
spin transformation Sx→−Sx, Sy→−Sy. The spin initially di-

recting to north pole �S� = �0,0 ,1�� stays there for time dura-
tion T, then the first kick rotates the spin by an angle 2K

about the x axis and now S� = (0,−sin�2K� , cos�2K�). The

following free evolution rotates the spin to S�

= (0,sin�2K� , cos�2K�). Then, the second kick will drive
the spin back to north pole through another rotation of 2K
about the x axis. With this the spin’s motion is two kick
period recurrence and quantum antiresonance occurs.

The motion of the spin is more complicated with interac-
tions. The spin components at x̂ and ŷ directions can be
written as Sx=1−Sz

2 cos � and Sy =−1−Sz
2 sin � in terms

of population difference Sz and relative phase �, which
yields the relation

Ṡx = �̇Sy −
g

�
SzSy cos2 �

during the free evolution. Comparing this equation with the
Bloch equation �11�, we obtain the equation of motion for the
relative phase,

�̇ =
1

2
+

g

8�
+

g

2�
�cos 2� +

3

4
�Sz. �14�

We see the motion between two consecutive kicks is ap-
proximately described by a rotation of �+g�1+3Sz� /4 about
the z axis. Compared with the noninteraction case, the mean-
field interaction leads to an additional phase shift g�1
+3Sz� /4. This phase shift results in a deviation of the spin
from Sx=0 plane at time 2T−, i.e., the moment just before the
second kick. As a result, the second kick cannot drive the
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spin back to its initial position and quantum antiresonance is
absent. However, the phase shift will be accumulated in fu-
ture evolution and the spin may reach the Sx=0 plane at a
certain time mT− �beat period� when the total accumulated
phase shift is � /2. Then the next kick will drive the spin
back to north pole by applying an angle 2K rotation about
the x axis.

The above picture is confirmed by our numerical solution
of the spin Hamiltonian with the fourth-order Runge-Kutta
method �26�. In Fig. 4, we plot the phase portraits of the spin
evolution by choosing different initial conditions of the
population difference Sz and relative phase �. Just after each
kick three spin components Si �i=x ,y ,z� are determined and
their projections on the Sz=0 plane are plotted. For the non-
interaction case �Fig. 4�a��, we see that the motion of the spin
is an oscillation between the north pole A and another point
B, indicating the occurrence of quantum antiresonance. The
interaction between atoms changes the phase portraits dra-
matically �Fig. 4�b��. Around the north pole, a fixed point
surrounded by periodic elliptic orbits appears. The two-point
oscillation is shifted slowly and forms a continuous and
closed orbit, representing the phenomenon of quantum beat-
ing.

In Fig. 5 we see that the relative phase at the moment just
before the even kicks increases almost linearly and reaches
2� in a beat period. The slope of the increment reads, RP
= ���4T−�−��2T−�� /2, which can be deduced analytically.
With this and through a lengthy deduction, we obtain an
analytic expression for the beat frequency to first order in g,

fbeat �
g

4�
�1 + 3 cos�2K�� . �15�

In Fig. 6, we plot the evolution of population difference
and the phenomenon of quantum beating is clearly seen in
the spin model. Notice that there is a one-peak miss of the
oscillation at the middle of one period because the popula-
tion difference decreases in two consecutive kicks. Taking
account of this missed peak, we obtain the oscillation fre-
quency

fosc �
Ntotal − Nmiss

2Ntotal
=

1

2
−

1

2
fbeat, �16�

where Ntotal and Nmiss are total and missed numbers of peaks,
respectively.

The analytical expressions Eqs. �15� and �16� of the beat
and oscillation frequencies are in very good agreement with
the numerical results obtained from the GP equation, as
shown in Fig. 3. Therefore the beating provides a method to
measure interaction strength in an experiment.

C. Antiresonance with interactions

In the spin model, we see that it is the additional phase
shift originating from weak interactions that destroys the two
kick period recurrence of the antiresonance and leads to the
phenomenon of quantum beating. Therefore we will still be
able to observe the quantum antiresonance even in the pres-
ence of interactions if the additional phase shift may be com-
pensated. Actually, the additional phase shift can be canceled
by varying the kick period T so that the relative phase � only
changes � between two consecutive kicks. Using Eq. �14�,
we find that the new kick period for antiresonance in the
presence of interactions may be approximated as

TAR �
8�2

4� + g + 3g cos�2K�
. �17�

In Fig. 7, we plot the evolution of the average energy E�t�
with the new kick period TAR. We see that the energy oscil-
lates between two values and the oscillation period is 2TAR,
clearly indicating the recovery of the antiresonance.

D. Decoherence due to thermal noise

In realistic experiments, the decoherence effects always
exist. Generally, decoherence originates in the coupling to a
bath of unobserved degree of freedom, or the interparticle
entanglement process �27,28�. The main source of decoher-

FIG. 4. Periodic stroboscopic plots of the projection of spin on
the Sz=0 plane. The thick line and dots correspond to the orbits

with initial spin S� = �0,0 ,1�. K=0.8 �a� g=0.0; �b� g=0.1.

FIG. 5. �a� Plots of relative phase versus the number of kicks t,
where g=0.1, K=0.8. �b� Schematic plot of the phase shift. nT−�+�

represents the moment just before �after� the nth kick.

FIG. 6. �a� Plot of population difference versus the number of
kicks t, where g=0.1, K=0.8. �b� Details of �a� at the middle of a
beat period. The population difference decreases in two consecutive
kicks.
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ence in a BEC is the thermal cloud of particles surrounding
the condensate. Thermal particles scattering off the conden-
sate will cause phase diffusion at a rate � proportional to the
thermal cloud temperature. For internal states not entangled
with the condensate spatial state, � may be as low as 10−5 Hz
under the coldest experimental condition �24�, it may reach
2 Hz �29� or higher �30� depending on the practical experi-
mental situation.

Modeling decoherence by fully include the quantum ef-
fects requires sophisticated theoretical studies that nontrivi-
ally include noncondensate atoms. In the experiments on
BECs of dilute atomic gases trapped atoms are evaporatively
cooled and they continuously exchange particles with their
environment. Thus standard approaches of quantum optics
for open systems involving quantum kinetic master equations
seem especially natural for treating BECs �31�,

�̇ = i��,H� −
�

2 �
l=a,b

†l̂†l̂,�l̂†l̂,��‡ , �18�

where � is the N-body density operator.
Different approaches can be used to solve the Master

equations �24�, including �i� the mean-field treatment, �ii� the
mean-field solution plus first-order quantum fluctuation, and
�iii� the exact quantum solution. For our case of antireso-
nance and beating the mean-field solutions are stable so that
the quantum breaking time is expected to be long enough
��N�. It implies that the mean-field solution will follow the
exact quantum solution for a long time. So, we adopt the
simple mean-field treatment in our simulation. From the
mean-field viewpoint, the decoherence term in Eq. �18� in-
troduces a � transversal relaxation term into the mean-field
equations of motion,

Ṡx = �1

2
+

g

8�
−

g

8�
Sz�Sy − �Sx,

Ṡy = �−
1

2
−

g

8�
−

7g

8�
Sz�Sx − 2KSz�T�t� − �Sy ,

Ṡz =
g

�
SySx + 2KSy�T�t� . �19�

In Fig. 8, we plot the evolution of the population differ-
ence Sz for different decoherence constant �. We see that the
phenomenon of quantum beating is destroyed by strong ther-
mal noise �Fig. 8�b��, while it survives in weak noise �Fig.
8�a��. For large decoherence constant, the population differ-
ence Sz decays to 0 exponentially and the characteristic time
is the just the decoherence time �=1/�. Therefore the deco-
herence time � must be much larger than the beat period
2� / fbeat to observe the phenomenon of quantum beating,
which yields

2��/g �
1

4�
�1 + 3 cos�2K�� . �20�

In the case of K=0.8, Eq. �20� gives an estimation 2�� /g
�0.2, which agrees with the numerical results shown in Fig.
8.

If we suppose our ring shape parameters of r=5 	m, R
=50 	m �32� and use the typical data of 87Rb, a=5.7 nm, the
atom number is 104, the threshold rate approximates to a few
tens of Hz, that is controllable in a practical situation.

IV. STRONG INTERACTIONS: TRANSITION TO
INSTABILITY

A. Characterization of the instability: Bogoliubov excitation

Tuning the interaction strength still larger means enhanc-
ing further the nonlinearity of the system. From our general
understanding of nonlinear systems, we expect that the solu-
tion will be driven towards chaos, in the sense of exponential
sensitivity to initial condition and random evolution in the
temporal domain. The latter character has been clearly dis-
played by the irregular pattern of the energy evolution in Fig.
1�c�. On the other hand, the onset of instability �or chaotic
motion� of the condensate is accompanied with the rapid
proliferation of thermal particles. Within the formalism of

FIG. 7. Plots of average energy E�t� versus the number of kicks
t for K=0.1, g=0.1. TAR is determined through Eq. �17�.

FIG. 8. Plots of population difference with respect to the num-
ber of kicks in the presence of decoherence. K=0.8, g=0.2. Thin
lines correspond to �=0. Thick lines correspond to �a� 2�� /g
=0.001, �b� 2�� /g=1.
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Castin and Dum �11� described in Sec. II, the growth of the
number of the noncondensed atom will be exponential, simi-
lar to the exponential divergence of nearby trajectories in
phase space of classical system. The growth rate of the non-
condensed atoms is similar to the Lyapunov exponent, turn-
ing from zero to nonzero as instability occurs.

We numerically integrate Bogoliubov equation �2� for the
uk, vk pairs over a time span of 100 kicks, using a split
operator method, parallel to numerical integration of the GP
equation �1�. The initial conditions

�uk�0�
vk�0�

� =
1

2
�� + �−1

� − �−1 �eik� �21�

for initial ground-state wave function ����=1/2�, are ob-
tained by diagonalizing the linear operator in Eq. �2� �33�,
where �= ��k2 /2� / �k2 /2+2g���2��1/4.

After each kick the mean number of noncondensed atoms
is calculated and plotted versus time in Fig. 9�a�. We find that
there exists a critical value for the interaction strength, i.e.,
gc=1.96, above which the mean number of noncondensed
atoms increases exponentially, indicating the instability of
BEC. Below the critical point, the mean number of noncon-
densed atoms increases polynomially. As the nonlinear pa-
rameter crosses over the critical point, the growth rate turns
from zero to nonzero, following a square-root law �inset in
Fig. 9�a��. This scaling law may be universal for Bogoliubov
excitation as confirmed by recent experiments �12�.

The critical value of the interaction strength depends on
the kick strength. For very small kick strength, the critical
interaction is expected to be large, because the ground state
of the ring-shape BEC with repulsive interaction is dynami-
cally stable �34�. For large kick strength, to induce chaos, the
interaction strength must be large enough to compete with
the external kick potential. So, in the parameter plane of
�g ,k�, the boundary of instability shows a “U”-type curve
�Fig. 9�b��.

Across the critical point, the density profiles of both con-
densed and noncondensed atoms change dramatically. In Fig.

10, we plot the temporal evolution of the density distribu-
tions of condensed atoms as well as noncondensed atoms. In
the stable regime, the condensate density oscillates regularly
with time and shows a clear beating pattern �Fig. 10�a��,
whereas the density of the noncondensed atoms grows
slowly and shows main peaks around �= ±� and 0, besides
some small oscillations �Fig. 10�b��. In the unstable regime,
the temporal oscillation of the condensate density is irregular
�Fig. 10�c��, whereas the density of noncondensed atoms
grows explosively with the main concentration peaks at �
= ±� /2 where the gradient density of the condensed part is
maximum �Fig. 10�d��. Moreover, our numerical explora-
tions show that the cos2 � mode �Fig. 10�b�� dominates the
density distribution of the noncondensed atoms as the inter-
action strength is less than 1.8. Thereafter, the sin2 � mode
grows while cos2 � mode decays, and finally sin2 � mode
become dominating in the density distribution of noncon-
densed atoms above the transition point �Fig. 10�d��. Since
the density distribution can be measured in experiment, this
effect can be used to identify the transition to instability.

B. Arnold diffusion

We have seen that strong interactions destroy the beating
solution of the GP equation and the motion of the condensate
becomes chaotic, characterized by exponential growth in the
number of noncondensed atoms. The remaining question is
how the motion of condensate is driven to chaos, that is, the
route of the transition to instability.

The transition to chaos for the motion of the condensate
can be clearly seen in the periodic stroboscopic plots of the
trajectories for both two-mode approximation �Figs.
11�a�–11�d�� and four-mode approximation �Figs. 11�e� and
11�f�; it is exact for the interaction region we consider in Fig.
11� to the original GP equation �1�. The solution oscillates
between two points A and B �point C is identical to A in the
the spin model� for the noninteraction case, and forms a
closed path in the phase space for the weak interaction �Fig.
11�a��. Note that compared with the two-mode calculation,
the effective interaction strength in the four-mode approxi-

FIG. 9. �a� Semilog plot of the mean number of noncondensed
atoms versus the number of kicks t. The thicker lines are fitting
functions. K=0.8, g=0.1 �dashed line, fitting function 0.0003t1.3�,
g=1.5 �dotted line, fitting function 0.0011t2�, g=2.0 �dash-dotted
line, fitting function 0.32 exp�0.1t��. The inset shows the interaction
dependence of the growth rate. The scatters are from numerical
simulation and the solid line is the fitting function 0.33�g
−1.96�1/2. �b� Phase diagram of the transition to instability.

FIG. 10. Plots of condensate and noncondensate densities,
where K=0.8. �a�, �b� g=0.1; �c�, �d� g=2.0.
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mation is rescaled, to give the comparable pattern in the
phase space.

With increasing interaction strength, the stable quasiperi-
odic orbits in Fig. 11�b� bifurcate into three closed loops
�Fig. 11�c�� and chaos appears in the neighborhood of the
hyperbolic fixed points. However, diffusion from one sto-

chastic region to another are still blocked by KAM tori for
the two-mode system. In Fig. 11�d�, the trajectory with initial
condition Sz=1, �=0 is closer to the chaotic region.

The above discussion is based on two-mode approxima-
tion; actually, the solution is coupled with other modes of
higher energy states. For small interaction, this coupling is
negligible and the four-mode simulation gives the same re-
sults as seen in Figs. 11�a�, 11�b�, 11�e�, and 11�f�. For large
interaction, this coupling is important and our system is es-
sentially high dimensional �d�2�. One important character
of a high-dimensional dynamical system is that KAM tori �d
dimension� cannot separate phase space �2d dimension� and
the whole chaotic region is interconnected. If a trajectory lies
in a chaotic region it can circumvent KAM tori and diffuse to
higher energy states through Arnold diffusion. This process
is clearly demonstrated in Figs. 11�g� and 11�h�. We see that
the trajectory diffuses along the separatrix layers, circum-
vents the KAM tori, and finally spreads over whole phase
space �Fig. 11�h�, g=2.5�. We also calculate the diffusion
coefficient

DE =
2

J�J − 1� �
m�n

�Em − En�2

T�m − n�
, �22�

where Em is the energy after the mth kick, J is the total
number of kicks. For g=2.2 and g=2.5, the diffusion rates
are 7.2�10−11 and 1.5�10−9, respectively.

Arnold diffusion allows the state to diffuse into higher
energy states, which destroys the quasiperiodic motion of the
quantum beating and leads to the transition to instability. As
Arnold diffusion occurs, the motion of the condensate be-
comes unstable and the number of the noncondensed atoms
grow exponentially, as we have seen in above discussion.

Arnold diffusion is a general property of the nonlinear
Schrödinger equation in the presence of strong interactions.
However, it may be hard to observe the whole process of
Arnold diffusion in realistic BEC experiments because of the
limited number of atoms �106�. As Arnold diffusion occurs,
the instability of the condensate leads to the exponential
growth of thermal atoms which destroy the condensate, as
well as invalidate the GP equation �1� in a short time; while
the clear signature of the whole Arnold diffusion process
may only be observed in a relatively long period. On the
other hand, Arnold diffusion may be observed in the context
of nonlinear optics, where the GP equation �1� describes the
propagation of photons. The number of photons is very large
and the interactions between them are very weak, therefore it
is possible to have a long diffusion process without invali-
dating the GP equation �1�.

C. Dynamical localized states

Although the above discussions have been focused on a
periodic state of antiresonance, the transition to instability
due to strong interactions also follows a similar path for a
dynamically localized state. The only difference is that we
start out with a quasiperiodic rather than a periodic motion in
the absence of interaction. This means that it will generally
be easier to induce instability but still requires a finite
strength of interaction.

FIG. 11. Periodic stroboscopic plots of population difference
with respect to the relative phase between the first two modes. K
=0.8. �a�–�d� the two-mode model, where �a� g=0.1, circle dots
corresponds to g=0; �b� g=1.5; �c� g=1.9; �d� g=2.0; The thicker
line and larger dots on the phase portraits represent the trajectories
with initial conditions Sz=1, �=0. �e�–�h� the four-mode approxi-
mation. The portrait is the projection on the first two modes of the
trajectory with initial condition Sz=1, �=0. �e� g=0.1; �f� g=1.6;
�g� g=2.2; �h� g=2.5.
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In Fig. 12, we show the nonlinear effect on a dynamically
localized state at K=5 and T=1. For weak interactions �g
=1� the motion is quasiperiodic with slow growth in the
number of noncondensed atoms. Strong interaction �g=5�
destroys the quasiperiodic motion and leads to diffusive
growth of energy, accompanied by exponential growth of
noncondensed atoms that clearly indicates the instability of
the BEC. Notice that the rate of growth in energy is much
slower than the classical diffusion rate, which means that
chaos brought back by interaction in this quantum system is
still much weaker than pure classical chaos.

V. CONCLUSIONS

We have investigated the complex dynamics of a periodi-
cally kicked Bose-Einstein condensate that is considered as a
nonlinear generalization of the quantum kicked rotor. We
demonstrate the transition from the antiresonance to the
quantum beating and then to instability with increasing
many-body interactions, and reveal their underlying physical
mechanism. The stable quasiperiodic motions for weak inter-
actions, such as antiresonace and quantum beating, have
been studied by mapping the nonlinear Schrödinger equation
to a spin model. The transition to instability has been char-
acterized using the growth rate of the noncondensed atoms
number, which is polynomial for stable motion and exponen-
tial for chaotic motion of the condensate.

Finally, we emphasize that the results obtained in the pa-
per are not limited to BEC and can be directly applied to
other systems whose dynamics are governed by the nonlinear
Schrödinger equation.
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