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The generation of internal gravity waves by tidal flow over topography is an important oceanic
process that redistributes tidal energy in the ocean. Internal waves reflect from boundaries, creating
harmonics and mixing. We use laboratory experiments and two-dimensional numerical simulations
of the Navier—Stokes equations to determine the value of the topographic slope that gives the most
intense generation of second harmonic waves in the reflection process. The results from our
experiments and simulations agree well but differ markedly from theoretical predictions by S. A.
Thorpe [“On the reflection of a train of finite amplitude waves from a uniform slope,” J. Fluid Mech.
178, 279 (1987)] and A. Tabaei et al. [“Nonlinear effects in reflecting and colliding internal wave
beams,” J. Fluid Mech. 526, 217 (2005)], except for nearly inviscid, weakly nonlinear flow.
However, even for weakly nonlinear flow (where the Dauxois—Young amplitude parameter value is
only 0.01), we find that the ratio of the reflected wave number to the incoming wave number is very
different from the prediction of weakly nonlinear theory. Further, we observe that for incident beams
with a wide range of angles, frequencies, and intensities, the second harmonic beam produced in
reflection has a maximum intensity when its width is the same as the width of the incident beam.
This observation yields a prediction for the angle corresponding to the maximum in second
harmonic intensity that is in excellent accord with our results from experiments and numerical

simulations. © 2011 American Institute of Physics. [doi:10.1063/1.3553294]

I. INTRODUCTION

The reflection of internal waves by topography results in
mixing at the boundaries and redistribution of tidal energy in
the ocean. The mixing work done by internal waves is hy-
pothesized to be an important source of the potential energy
increase needed to return deep, dense water to the surface'?
as part of the meridional overturning circulation,™* although
there is a debate about the importance of vertical mixing in
this process.s’6

Wave reflection modifies the internal waves generated by
tidal flow over topography. Near the generation region, the
wave spectrum includes high harmonic components.7 How-
ever, high wave modes dissipate rapidly within about 100 km
of the generation region.

The processes that both create and dissipate high wave
modes are not well understood. Harmonics generated by re-
flection are a possible source of high wave modes and they
may be unstable, causing overturning and mixing. Further,
reflection may lead to wave trapping in the boundary layer,
another possible source of internal wave mixing. Thus, an
understanding of internal wave beam generation and reflec-
tion is needed to understand energy transfer in the oceans.

Theoretical work on internal wave reflection has gener-
ally been limited to inviscid, weakly nonlinear flow, whereas
observations in the oceans, laboratory experiments, and nu-
merical simulations reveal that tidal flow over topography
can generate intense, strongly nonlinear wave beams, par-
ticularly in regions where the slope of the topography
matches the angle of internal wave propagation.7’9_]5 Daux-
ois and Y0ung16 developed a weakly nonlinear theory for
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near-critical reflection and concluded that if wave beams are
strongly nonlinear, the reflection process will rapidly lead to
turbulence and enhanced mixing near the slope. These waves
may erode continental slopes to the same angle as internal
wave beams at the tidal frequency.lo’”’18

Weakly nonlinear analyses for inviscid fluids by
Thorpe19 and by Tabaei et al.® have predicted the value of
the topographic slope angle at which the second harmonic
intensity is a maximum. Pioneering experiments and
simulations*"** studied harmonic generation by reflecting in-
ternal waves but did not examine the applicability of the
analyses of Thorpe and Tabaei et al. to strongly nonlinear
reflection processes. The present study examines how the
generation of second harmonic waves upon reflection from a
sloping boundary depends on boundary angle, wave beam
intensity, and fluid viscosity.

This paper is organized as follows. Section II describes
the theoretical work of Thorpe and Tabaei et al. Section III
describes our experimental and computational methods and
data analysis. Section IV compares our experimental and nu-
merical results, which agree but differ from the predictions
of both of the weakly nonlinear analyses for inviscid fluids.
We show that, instead, our results agree with a prediction
deduced from an observed geometric relation between the
second harmonic and incident wave beams. Section IV also
discusses how the results depend on forcing amplitude, vis-
cosity, and frequency. Section V considers the implications
of the geometric relation on the reflection of internal waves
in theory and in the oceans.

© 2011 American Institute of Physics
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FIG. 1. Schematic showing the reflection of an internal wave beam from a
boundary at an angle « relative to the horizontal. The incoming and reflected
wave beams are at angles 6; and 6,, respectively, which by the dispersion
relation (1) are equal because the frequencies w; and w, are the same. How-
ever, the width and wave number of the reflected beam are different than
those of the incident beam, as given by Eq. (3). The second harmonic wave
beam (shown by the dashed lines) is generated by nonlinear interaction
between the incoming and reflected wave beams, which occurs mainly in the
overlap (shaded) region. The harmonic propagates at an angle given by
sin 6,=2w/N. The group velocities ¢;, ¢, and ¢, indicate the direction of
energy propagation.

Il. THEORY

In a stably stratified fluid, any vertically displaced fluid
parcel experiences restoring forces from buoyancy and grav-
ity, causing it to oscillate about its equilibrium height, and
this oscillatory motion allows the propagation of internal
waves. In the absence of rotation (Coriolis forces), the dis-
persion relation for plane internal gravity waves is

k, .
w=N—====Nsin 0, (1)
vk +k;

where o is the wave frequency, k, and k, are, respectively,
the horizontal and vertical wave numbers, N is the buoyancy
frequency, and 6 is the angle of the group velocity relative to
the horizontal; 6 is also the angle of k with respect to the
vertical because & is perpendicular to the group velocity of
the waves (cf. Fig. 1, which uses the notation of Ref. 19).
The buoyancy frequency is given by

J
N=+/-32, 2)
p oz

where p is the density, g is the gravitational acceleration, and
z is the vertical coordinate, aligned antiparallel to the gravity
vector.

The dispersion relation (1) is unusual because frequency
and wave number are only indirectly related. The profile of
an internal wave beam is determined by the wave number
distribution of the waves in the packet. The various wave
number components in a beam must all have the same fre-
quency because components at different frequencies would
travel at different angles and diverge.

In the absence of nonlinear effects, an internal wave
beam reflected by a topographic slope must have the same
frequency after reflection; hence, it propagates at the same
angle with respect to the horizontal as the incident beam,
regardless of the angle of the topography from which it re-
flects (cf. Fig. 1).
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The reflected wave beam has a width and wave number
profile different from the incident beam because the two
beams propagate at the same angle 6,=6; (Fig. 1). From ray
theory and geometry, the wave numbers are related by

ki sin(6; — a) 3)
k, sin(6,+a)

The narrower reflected beam has higher energy flux than the
incident beam because the reflected beam is confined within
a smaller region. We test the predicted wave number relation
(3) in the experiments and simulations described in Sec.
IV D and, surprisingly, as we shall show, Eq. (3) fails to
describe our results even for our lowest intensity incident
beam.

Two approaches have been taken to predict the topo-
graphic angle yielding the maximum intensity of the second
harmonic. Phillips23 reasoned that if the fluid is inviscid and
nonlinear interactions are weak, the nonlinear process will
occur through a resonant triad; that is, a new wave will be
generated from the interaction of two internal waves as either
the sum or difference of the frequency and of the wave num-
ber

k3 = kl * k2 and W3 = W =+ ;. (4)

Thorpelg assumed that harmonic waves result from a
resonant triad forming between an incoming plane wave and
the wave’s primary reflection. He used boundary conditions
to show that the only angle that satisfies the resonant triad
condition is

can-! ( sin 6; ) 344 cos 0 (5)
@ =tlan — |V=3+4cos” b,]|.
Thorpe 2 cos’ 0; X !

Although we are concerned with wave beams, i.e., a packet
of plane waves rather than a single plane wave, we will
examine the possible applicability of Thorpe’s analysis to our
data.

In a different approach, Tabaei et al.”® derived a relation
for internal wave reflection from a sloping boundary by as-
ymptotically matching solutions in the near and far fields.
They considered that for a wave beam, resonant triads can
form between any of the components of the incoming and
reflected wave beams. For a beam with a Gaussian cross-
beam profile in wave number space, the energy of the second
harmonic diverges as the angle of the boundary approaches
the wave propagation angle.zo Prior to Tabaei et al., the study
by Dauxois and Young16 of near-critical reflection showed
that nonlinear and viscous effects heal the singularity that
occurs at the critical angle. Thus, the energy will not diverge
but will have a large finite value when

O Tabaei = 61' . (6)

The predictions of Thorpe and Tabaei e al. differ sig-
nificantly, especially for large beam angles. For example, for
an incoming wave beam with 6;=22.7°, @ryep.=8.2°, and
OTabaci=22.7°. Our experiments and simulations were under-
taken to determine which prediction is more accurate.
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FIG. 2. The wave maker consists of five acrylic plates in a box (right)
driven by a camshaft (left) using a computer-controlled stepper motor. The
desired beam profile is generated by selecting the angular difference A¢
between successive cams. In this example, A¢$p=45°, which creates a half-
sine wave configuration.

. METHODS
A. Experiment

Experiments are performed in a 250 1 glass tank
(90 cm X 45 cmX60 cm high) filled using the double-
bucket method®* to create a linearly stratified fluid; this re-
quires about 25 kg of salt (NaCl). The salty water in the
bottom of the tank has a viscosity about 30% higher than the
fresh water at the top of the tank. However, changes in vis-
cosity are less than 10% within the region studied in the
middle of the tank. The density profile, measured with an
Anton Paar density meter, is typically linear within 1%. The
density change from the top to the bottom is about Ap
=140 kg/m?, which corresponds to a density gradient of
dp/3z=250 kg/m* and a buoyancy frequency of N
=1.57 rad/s. The internal waves were observed to propagate
in straight lines, indicating constant N. The value of N used
in comparing experiment and simulation was deduced from
the wave propagation angle rather than from the measure-
ments of the density as a function of height.

A collimated internal wave beam is generated using a
wave maker similar to the one invented by Gostiaux et al.®
The wave maker consists of a stack of five identical acrylic
plates (15 cm X 15 ¢cm X 0.6 cm), separated by 0.25 cm and
housed in a parallelepiped open-sided box (see Fig. 2). A
helicoidal rotating camshaft oscillates the plates periodically.
The eccentricity of the camshaft determines the oscillation
amplitude of the plates. Our velocity field measurements (de-
scribed below) show that the generated internal wave beam
is essentially two-dimensional.

In the tank, the wave maker is pointed in the direction of
the excited wave beam. When the frequency, and therefore
the wave beam angle, changes, the wave maker tilt angle is
adjusted accordingly. The wave beam reflects off an acrylic
plate (40 cmX20 ¢cm X 0.6 c¢cm) mounted in the tank. Mea-
surements were made for plate angles ranging from zero
(horizontal) to the critical angle (a=#6,).

Particle image velocimetry is used to measure the veloc-
ity field. The fluid is seeded with TiO, tracer particles
(~10 pm diameter). A 532 nm wavelength laser (0.2—
0.5 W) is used to produce a 0.5 cm thick light sheet that
illuminates the tracer particles in a vertical plane.

The tracer particle motion in a 25 ¢cm X 25 cm region is
imaged with a 10 bit digital camera (resolution:
1004 X 1004 pixels). The instantaneous velocity field is ex-
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tracted from consecutive image pairs using the CIV algo-
rithm of Fincham and Delerce.”® The algorithm is run with a
MATLAB interface and the velocity field is stored in a
Network Common Data Form file. Data analysis is done in
MATLAB either using the UVMAT interface or our own
MATLAB codes.

B. Numerical simulations

Our numerical simulations use a slightly modified ver-
sion of a code developed by Barranco and Marcus.”” This
pseudospectral, fully parallelized code describes a two-
dimensional, stratified fluid in the Boussinesq approxima-
tion, which is valid for flow in our tank because the variation
in density is small. The code solves for the three components
of the velocity and the density with a fractional step method.
The equations solved are

il ot =— (ii - V)ii — VPl py — gi(pl/py) + vV2il, (7)
V-i=0, (8)
apldt=—(ii - V)p+ (poN*/g)u, 9)

where i is the velocity, u, is the vertical component of the
velocity, P is the nonhydrostatic component of the pressure,
p is the nonhorizontally averaged density perturbation, N is
the buoyancy frequency as defined in Eq. (2), fi is a unit
vector that points vertically upward (antiparallel to gravity),
and v is the kinematic viscosity.

To generate internal gravity waves, a momentum forcing
term similar to that used by Slinn and Riley28 and Javam et
al.”’ is added to the right side of Eq. (7)

F=[V X (VX ®2)]cos(wt + ), (10)

where w and ¢ are, respectively, the forcing frequency and
phase. The amplitude ®,,,,, position (x, zy), and beam width
o (standard deviation of the Gaussian profile) of the forcing
are given through the term

—(x —xo)2 —(z- 20)2

= . (11)

We use the code to solve the full Egs. (7)—(9) directly in
two dimensions for Reynolds numbers up to several thou-
sand, which is beyond the highest Reynolds number (about
1000) reached in our laboratory experiments. The computa-
tions yield the x and z components of the velocity and the y
component of vorticity at each grid point, 128 times per
wave period. The instantaneous vorticity field of a numeri-
cally simulated internal wave field is shown in Fig. 3. The
forcing is strongest along the wave beam propagation direc-
tion (in the second and fourth quadrants with respect to the
wave maker), though weaker beams can be seen in the other
two quadrants.

The Reynolds number dependence of the results was ex-
amined by solving the equations for different values of the
viscosity v and for different beam widths o. For some tests,
we use an inviscid version of the code with the no-slip
boundary conditions at boundaries A and C replaced with
free-slip boundary conditions.

D(x,z) = Dpypeexp
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FIG. 3. (Color online) Vorticity field computed for 6,=22.7°, N
=1.63 rad/s, v=0.01 cm?/s, and plate angle @=2.5°. The computational
domain has been rotated so that the gravity vector points downward; the
image has been cropped to fit. The shaded box shows the location of the
forcing term. A sponge layer has been added to the no-slip boundary at the
top of the domain (boundary A) to absorb the upward propagating wave
created by the wave maker. The simulation is periodic at boundaries B and
D and there is a no-slip boundary condition at boundary C.

In both simulation and experiment, the beam intensity
for a given forcing depended slightly on the domain size and
the bottom boundary angle relative to the horizontal. To en-
sure that all incident wave beams used in a beam angle study
were the same, the finite domain effects were controlled by
adjusting the amplitude and/or wavelength. The peak vortic-
ity of the beam incident on the plate was kept at ~0.4 rad/s
just before hitting the boundary; this corresponds to a veloc-
ity amplitude |i,,,,|=0.25 cm/s. As Fig. 4 illustrates, the
beam profiles of the instantaneous vorticity and the velocity
amplitude from experiment and simulation are nearly the
same.
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FIG. 4. (a) The time-independent velocity amplitude cross sections for wave
beams under the same conditions as in Fig. 6. The cross section from the
numerical simulation (dashed line) is accurately Gaussian, whereas there is
a small departure from a Gaussian for the laboratory beam (solid line). (b)
Vorticity cross section snapshots at the same location.
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FIG. 5. (Color online) Contour plot of the measured second harmonic in-
tensity (A,)%. The kinetic energy of the beam was integrated over the area
where it was above one-half the maximum. Integration starts at the point of
maximum Kinetic energy within the beam (white circle).

C. Data analysis

In the experiments and simulations, we found that the
reflection process evolved to a steady state in about eight
oscillation periods. The analysis was done after waiting 15
wave periods, well after steady state had been achieved but
before the reflection region became affected by multiple re-
flections from side and top boundaries.

To find the steady state velocity amplitude in the experi-
ments and simulations, each component (u, and u,) of the
velocity field is first processed in MATLAB using a four-
parameter curve fit to

u =A1 Sin((u+ ¢1) +A2 Sin(2w+ ¢2), (12)

where u refers to one of the two velocity components, A; is
the amplitude at the fundamental frequency w, A, is the am-
plitude at the harmonic frequency 2w, and ¢; and ¢, are the
corresponding phases.

As a measure of the intensity of the second harmonic
wave beam generated by reflection for different plate angles
a, we integrate (A,)? in the approximately rectangular region
shown in Fig. 5, where the beam amplitude is computed
from (A=VAZ+A2).

The resultant kinetic energy depends on the starting
point of the integration, so for consistency, we used the point
of highest kinetic energy as the starting point (cf. Fig. 5). The
location of maximum kinetic energy was found using (A,)?
as the weights in an average over the highest energy region
of the beam (dark red in Fig. 5)

2

7 _ EtAl I

max KE — 2
2A;

(13)

where A; is the amplitude and 7; is the position coordinate for
the ith grid point within the region.
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FIG. 6. (Color online) Instantaneous experimental and computed vorticity fields for forcing frequency, w=0.628 rad/s, N=1.63 rad/s, 6;=22.7°, plate angle
a=14.1°, and beam amplitude A~ 0.25 cm/s. In the experiment, the spatial resolution was 0.5 cm.

IV. RESULTS

A. Intensity of second harmonic from experiment
and simulation

Our experimental and computational results for the vor-
ticity fields of reflecting internal wave beams agree well, as
the snapshots in Fig. 6 illustrate. The intensity of the second
harmonic generated by the beam reflection as the plate angle
a varied was found in all cases to exhibit a well-defined
maximum (Fig. 7), which contrasts with an earlier
observation® that did not detect any boundary angle depen-
dence of the second harmonic intensity. In our experiments
and simulations, the angles determined for the maximum
second harmonic intensity agreed within 1°, although the ex-
periments and simulations yielded a somewhat different
functional dependence of the intensity on plate angle (Fig.
7). This difference arose in part because of the experimental
difficulty in maintaining the same incident beam waveform
for varying distances between the wave maker and the re-

experiment

2nd harmonic kinetic energy (cm?/s?)

0° 10° 20°
boundary angle a

FIG. 7. Intensity of the second harmonic generated in the reflection of an
internal wave beam (at #=22.7°) from a plate tilted at angle @. The curves
are cubic spline fits to the data. The boundary angles a where the maxima
oceur are a,,,,=13.2° (experiment) and 14.1° (simulation), far from either
the 22.7° predicted by Tabaei et al. (Ref. 20) or the 8.25° predicted by
Thorpe (Ref. 19).

flecting plate for different plate angles; the waveform also
depended on the oscillation amplitude of the wave maker and
on finite domain effects, which changed with plate angle.
Further, the simulations were two-dimensional whereas the
experiments were only approximately so.

In all weakly nonlinear theories, the amplitude of the
second harmonic varies as the square of the amplitude of the
incident beam. Figure 8(a) shows this expected quadratic de-
pendence for low amplitude incident beams, but for high
amplitude incident beams, the amplitude of the second har-
monic saturates. To characterize the degree of nonlinearity,
we use the dimensionless amplitude parameter introduced by
Dauxois and Young16 in a two-dimensional theoretical study
of near-critical reflection

10°

10

and (cm/s)

A

-

o
o

-
<

o F

Q

2

102 10° Ain (cm/s)

nonlinear

a

0.0 . .
0.0 0.3 Am (cm/s) 0.6

FIG. 8. (a) The second harmonic amplitude depends quadratically (black
line) on the incident wave beam amplitude, up to high amplitudes where the
second harmonic determined in the simulations (solid dots) saturates (for a
beam incident at #=22.7° on a boundary at angle a=12.5°). (b) Under the
same conditions, the dimensionless amplitude parameter a,qyjincar LEQ- (14)]
in the simulations varied from 0.01 (very weakly nonlinear) to 0.52 (non-
linear) and in the experiments was 0.25 (corresponding to A;,=0.25 cm/s).
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K2 sin[2(6+ a)]
Anonlinear = = . l/lmax’ (14)
2N sin 0

where k;, is the magnitude of the wave vector of the incident
beam, ¥, is the maximum amplitude of the stream func-
tion, and « and @ are defined in Fig. 1. Weakly nonlinear
theory should apply when a,ggjinear<< 1, but in our experi-
ments dponiinear =~ 0.25 and simulations were conducted for
0.01 <apontinear<0.5 [see Fig. 8(b)]. We shall show in
Sec. IV D that our simulations reveal a significant departure
from weakly nonlinear theory even for a,gjipea=0.01.

B. An observation-based prediction in accord with
experiment and simulation

We find that for every internal wave beam that we could
produce in experiment and for all but the lowest intensity
beams in the simulations, the second harmonic generated in
reflection has a maximum intensity when the width of this
beam is the same as that of the incident beam. This result,
found for a wide range of incident beam intensities, widths,
and angles, leads to the conclusion from ray theory that the
plate angle corresponding to the maximum intensity of the
second harmonic beam is given by

tan~!(sin 6))
Ageom = , (15)
EOM 1 - 4 sin® 6, + cos 6,

which is in remarkable accord with our laboratory and com-
putational results [Fig. 9(a)]. For higher plate angles, those
near critical, we observed very weak second harmonic waves
and strong mean flows from the reflection region. However,
we did not observe density inversions or turbulent events.

C. Recovery of the Tabaei et al. prediction for low
amplitude beams

The analyses of Thorpe and Tabaei et al. (cf. Sec. II)
assumed weak nonlinearity and no viscosity. To examine this
limit we simulated wave beams of very low intensity (A;,
~0.01 cm/s and apgpjinear ~ 0-01), below the level for which
we were able to make accurate measurements in our experi-
ments. The results then agreed with the Tabaei et al. predic-
tion for beam angles down to about #=20° and reducing the
fluid viscosity led to agreement with Tabaei et al. to yet
lower beam angles [Fig. 9(b)]. However, as the wave ampli-
tude was increased, a,,, decreased rapidly, departing from
the prediction of Tabaei et al. For lower frequency waves, we
found that the amplitude of the incident beam had to be even
lower for a,,,, to approach the Tabaei et al. prediction.
Tabaei et al.”’ comment that nonlinear effects are generally
increased by longer time scales of interaction; this is sup-
ported by the dependence on wave period we found.

D. Wave number and amplitude of the reflected
fundamental beam

The results from our experiments and simulations show
that the weakly nonlinear analyses of Thorpe19 and Tabaei
et al.* have limited applicability. To understand this result,
we measured the wave number of the incident beam and the
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FIG. 9. The boundary angle corresponding to the maximum intensity of the
second harmonic of an internal wave beam reflected from a surface for
incident beam velocity amplitudes: (a) A=0.25 cm/s (@yoniinear=0-25) and
(b) A=0.01 cm/s (@pgpinear="0-01). Our laboratory observations (triangles),
numerical simulations (circles) with water viscosity (¥=0.01 cm?/s), and
numerical simulations with viscosity reduced by an order of magnitude
(open squares) in (a) all agree well with the solid curve [Eq. (15)], which
was obtained from ray theory, given the observation that the maximum
intensity of second harmonic occurs when that beam’s width is the same as
that of the incident beam. Clearly, these results do not agree with the theory
of Tabaei et al. (Ref. 20) or Thorpe (Ref. 19). However, for beams of very
low velocity amplitude (A=0.01 cm and a,qyjinear=0-01, well below the ex-
perimentally measurable level) in (b) agree with the prediction of Tabaei et
al. for incident beam angles greater than ~25°. When the viscosity is re-
duced from that of water by an order of magnitude, the agreement of the
simulation with the prediction of Tabaei ef al. extends to about 15° (open
squares).

reflected fundamental beam to test the assumption in the
Thorpe and Tabaei ef al. analyses that the incident and re-
flected beams have wave numbers in the ratio given by
Eq. (3). We determined the wave numbers of the beams by
fitting the cross-sectional profiles of the vorticity to

4= qmadexpl— (7- 170)* 20 I}sin(kn + @), (16)

where g, is the amplitude of oscillation, 7 is a coordinate
perpendicular to the wave beam propagation direction, 7, is
the center of the wave beam, o is the standard deviation of
the wave packet envelope, k is the dominant wave number in
the beam, and ¢ is the phase at a given instant in time.
Equation (3) predicts that the wave number ratio k;/k,
should approach zero as the critical angle is approached,
whereas our simulations yield a quite different result: the
ratio k;/k, remains far above zero as the boundary angle
increases toward the incident beam angle, as shown in
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FIG. 10. (a) The ratio of the dominant wave number in the incoming beam
to the dominant wave number of the reflected beam (at the fundamental
frequency) given by theory [Eq. (3), solid curve] and numerical simulation
(dashed curve). (b) The prediction of the theory of Tabaei ef al. for the ratio
of the reflected fundamental wave beam’s peak amplitude to the incoming
wave beam’s peak amplitude, A,/A;=sin(6,+ a)/sin(6;— «), compared with
the results from our numerical simulation. Theory predicts that the ampli-
tude of the reflected wave should diverge at the critical angle, whereas the
simulations yield quite different behavior with a broad peak in the reflected
wave amplitude at about @=4.5° and a monotonic decrease in amplitude for
larger angles. [In both (a) and (b), 6,=22.7°, A;;=0.25 cm, and @,gpiincar
=0.25.]

Fig. 10(a). The laboratory measurements of the wave number
ratio are consistent with the simulations for the same incident
beam amplitude. Simulations were then made with the am-
plitude parameter a,gjinear feduced from 0.25, as in Fig. 8, to
a value of only 0.01 and the viscosity reduced to a value ten
times smaller than that of water, but the wave number ratio
limit decreased only a small amount, from 0.40 to 0.35.

Another prediction of the theory of Tabaei et al. (but not
that of Thorpel9) is that the amplitude of the reflected wave
beam should be given by A,/A;=sin(6,+ @)/sin(6;— «), thus
diverging at the critical angle. Instead, our simulations yield
very different behavior, as Fig. 10(b) illustrates. Thus we
conclude that even when the theory of Tabaei et al. predicts
the angle found for the maximum second harmonic intensity
(at low intensities, cf. Sec. IV B), the predictions about the
wave number and the amplitude of reflected fundamental
wave beam are not valid.

E. Wave number of the second harmonic

The analyses of Thorpe19 and Tabaei ef al.” predict that
a harmonic generated in reflection should have a wave vector
component parallel to the boundary that is simply related to
the incident beam’s wave vector component parallel to the
boundary kj, =nk;, where n is the order of the harmonic.
Gostiaux et al.”” confirmed this prediction experimentally
and our experiments and simulations are also in accord with
the predicted relation. It seems plausible that this result,
coupled with the @yeop, condition (equal beam widths at peak
harmonic generation), would lead to a triad relationship be-
tween the wave vectors of the incident, reflected fundamen-
tal, and reflected harmonic, as expected from the resonant
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triad theory of Thorpe;19 however, the results for the wave
vectors in our experiments and simulations do not support
the triad theory.

F. Reflection compared to interaction of unbounded
beams

Although Eq. (3) does not correctly predict the charac-
teristics of the reflected wave beams, harmonic generation
might still result from the nonlinear interaction of the incom-
ing and reflected wave beams. The process is analogous to
the incoming wave beam interacting with a virtual wave
beam emanating from the bottom boundary with the same
characteristics as the reflected wave. Such beam-beam inter-
actions will create harmonic waves except for certain beam
orientations as shown by Jiang and Marcus.” We simulated
such colliding wave beams (in the absence of a reflecting
boundary) with the amplitude and wave number profile of
the interacting beams matched to those of the incoming and
reflected wave beams from the simulations.

Our numerical simulations reveal that the intensity of the
second harmonic is proportional to the sum of the integrated
intensities (see Sec. III C) of the incident beam and the re-
flected fundamental wave beam. Hence, harmonic generation
is strongest when the virtual reflected wave beam is the
strongest since the incoming wave beam is held fixed. As
shown in Fig. 10, the reflected wave beam has the highest
amplitude (and highest integrated kinetic energy because it is
also relatively wide) at a small angle of «, not at the critical
angle. Thus, our data cannot be explained as a nonlinear
self-interaction between the incoming and reflected wave
beams, as suggested by Phillips.23‘31

V. DISCUSSION

Our laboratory experiments and numerical simulations
for an internal wave reflecting from a sloping boundary are
in good agreement [Fig. 9] and they reveal a distinct peak in
the second harmonic intensity as the boundary angle varies.
Our results differ from the predictions by Tabaei et al.,”
except for very weak forcings, weaker than those measurable
in experiments, in which case we recover the results of
Tabaei et al. for wave beam angles greater than ~25°, i.e.,
the boundary angle of maximum harmonic generation ap-
proaches the critical angle. This agreement extended to
somewhat lower wave beam angles when the fluid viscosity
was decreased by an order of magnitude. However, we found
that even for low intensity incident beams (a@,opjinear~ 0.01),
the result from our simulation differs from the weakly non-
linear theory prediction for the wave number ratios k;/k,
[cf. Fig. 10(a)].

We did not find agreement with the resonant triad pre-
diction of Thorpe19 for any conditions, likely because as
pointed out in Sec. II, Thorpe derived his result for a plane
wave reflecting from a boundary, not for a packet of plane
waves (finite extent wave beam), where there are interactions
that depend on the wave number profile of the wave beam.

Neither the theory of Tabaei et al. nor Thorpe correctly
predicts the boundary angle that maximizes the generation of
second harmonic waves in the laboratory experiments or nu-
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merical simulations. However, we obtained a prediction [Eq.
(15)] for the angle of maximum second harmonic intensity in
good agreement with our results from experiment and simu-
lations; our prediction was based on the observation that
when the second harmonic has maximum intensity, the
widths of the incoming and second harmonic beams are
equal (cf. Sec. IV C). Importantly, Eq. (15) holds with the
viscosity reduced by an order of magnitude, and this result is
correlated with long wave period. Thus, it may be relevant in
the ocean since wave beams near the generation region are
intense and have long wave periods that are of the order of
the tidal forcing period.lz’32 Further, wave beams generated
by tidal flow over topography in a stratified fluid have a
profile similar to those generated in our experiments and
simulations.'’

Our results indicate that critically reflecting internal
waves (where 6=q), rather than being a source of intense
second harmonic waves, dissipate energy in the boundary
region. Although our experiments and simulations are for
nonlinear waves (i.e., they are not described by weakly non-
linear theory), we did not observe strongly nonlinear phe-
nomena such as density inversions, turbulent events, or other
direct evidence of mixing. However, we did observe strong
mean flows propagating from the reflection region. The ob-
served mean flows are similar to the strong boundary cur-
rents found by Eriksen® and observed for tidal flow on to-
pography where the slope is near the critical angle.lo‘14
Recent observations by van Haren and Gostiaux™* provide
direct evidence of breaking tidal-frequency internal waves
along a seamount. They show that the process involves the
coupling of low-frequency tidal waves with high-frequency
internal waves near the buoyancy frequency. This result sug-
gests that internal wave reflection is an important part of the
ocean mixing process.
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