Recent work provides a general two-step solution to trapping and cooling of atoms. The first step is magnetic stopping of paramagnetic atoms with the use of a sequence of pulsed fields. The second step is single-photon cooling, which is based on a one-way barrier. This cooling method is related intimately to the historic problem of “Maxwell’s Demon” and subsequent work by L. Szilard. Here, I discuss the connections between single-photon cooling and information entropy. I also outline future application of these methods to fundamental tests with hydrogen isotopes.